Geometric optimisation of quantum thermodynamic processes
- URL: http://arxiv.org/abs/2008.13593v3
- Date: Mon, 30 Aug 2021 09:06:10 GMT
- Title: Geometric optimisation of quantum thermodynamic processes
- Authors: Paolo Abiuso, Harry J. D. Miller, Mart\'i Perarnau-Llobet, and Matteo
Scandi
- Abstract summary: Differential geometry offers a powerful framework for characterising finite-time thermodynamic processes.
We develop some general principles for the optimisation of thermodynamic processes in the linear-response regime.
These include constant speed of control variation according to the thermodynamic metric, absence of quantum coherence, and optimality of small cycles.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differential geometry offers a powerful framework for optimising and
characterising finite-time thermodynamic processes, both classical and quantum.
Here, we start by a pedagogical introduction to the notion of thermodynamic
length. We review and connect different frameworks where it emerges in the
quantum regime: adiabatically driven closed systems, time-dependent Lindblad
master equations, and discrete processes. A geometric lower bound on entropy
production in finitetime is then presented, which represents a quantum
generalisation of the original classical bound. Following this, we review and
develop some general principles for the optimisation of thermodynamic processes
in the linear-response regime. These include constant speed of control
variation according to the thermodynamic metric, absence of quantum coherence,
and optimality of small cycles around the point of maximal ratio between heat
capacity and relaxation time for Carnot engines.
Related papers
- Finite-Time Processes In Quantum Thermodynamics: The Limits Of Irreversibility [0.0]
The emergence of irreversibility in physical processes, despite the reversible nature of quantum mechanics, remains an open question in physics.
This thesis explores the intricate relationship between quantum mechanics and thermodynamics.
We tackle the challenge of deriving irreversible thermodynamic behavior from the reversible microscopic framework of quantum mechanics.
arXiv Detail & Related papers (2024-10-24T16:48:24Z) - Quantum thermodynamics of the spin-boson model using the principle of minimal dissipation [41.94295877935867]
We investigate the influence of the environment on quantities such as work, heat and entropy production.
The results reveal significant differences to the weak-coupling forms of work, heat and entropy production.
arXiv Detail & Related papers (2024-04-18T12:11:18Z) - Stochastic Thermodynamics at the Quantum-Classical Boundary: A Self-Consistent Framework Based on Adiabatic-Response Theory [0.0]
Microscopic thermal machines promise to play an important role in future quantum technologies.
Making such devices widely applicable will require effective strategies to channel their output into easily accessible storage systems like classical degrees of freedom.
We develop a self-consistent theoretical framework that makes it possible to model such quantum-classical hybrid devices in a thermodynamically consistent manner.
arXiv Detail & Related papers (2024-04-15T20:13:42Z) - Dynamically Emergent Quantum Thermodynamics: Non-Markovian Otto Cycle [49.1574468325115]
We revisit the thermodynamic behavior of the quantum Otto cycle with a focus on memory effects and strong system-bath couplings.
Our investigation is based on an exact treatment of non-Markovianity by means of an exact quantum master equation.
arXiv Detail & Related papers (2023-08-18T11:00:32Z) - Thermodynamic geometry of ideal quantum gases: a general framework and a
geometric picture of BEC-enhanced heat engines [0.0]
We show that the standard approach of equilibrium physics can be extended to the slow driving regime in a thermodynamically consistent way.
We use a Lindblad-type quantum master equation to work out a dynamical model of a quantum many-body engine using a harmonically trapped Bose gas.
Our work paves the way for a more general thermodynamic framework that makes it possible to systematically assess the impact of quantum many-body effects on the performance of thermal machines.
arXiv Detail & Related papers (2022-12-22T23:14:00Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Szilard Engines as Quantum Thermodynamical Systems [1.3764085113103222]
We analyze an engine whose working fluid consists of a single quantum particle.
We show that the quantum engine obeys the Second Law.
However, the quantum engine does so via substantially different mechanisms.
arXiv Detail & Related papers (2020-10-27T22:33:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.