Quantum thermodynamics of the spin-boson model using the principle of minimal dissipation
- URL: http://arxiv.org/abs/2404.12118v2
- Date: Thu, 29 Aug 2024 14:15:03 GMT
- Title: Quantum thermodynamics of the spin-boson model using the principle of minimal dissipation
- Authors: Salvatore Gatto, Alessandra Colla, Heinz-Peter Breuer, Michael Thoss,
- Abstract summary: We investigate the influence of the environment on quantities such as work, heat and entropy production.
The results reveal significant differences to the weak-coupling forms of work, heat and entropy production.
- Score: 41.94295877935867
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A recently developed approach to the thermodynamics of open quantum systems, on the basis of the principle of minimal dissipation, is applied to the spin-boson model. Employing a numerically exact quantum dynamical treatment based on the hierarchical equations of motion (HEOM) method, we investigate the influence of the environment on quantities such as work, heat and entropy production in a range of parameters which go beyond the weak-coupling limit and include both the non-adiabatic and the adiabatic regimes. The results reveal significant differences to the weak-coupling forms of work, heat and entropy production, which are analyzed in some detail.
Related papers
- Quantum Thermodynamics of Open Quantum Systems: Nature of Thermal Fluctuations [0.0]
We investigate the thermodynamic behavior of open quantum systems through the Hamiltonian of Mean Force.
By analyzing both weak and strong coupling regimes, we uncover the impact of environmental interactions on quantum thermodynamic quantities.
arXiv Detail & Related papers (2024-07-31T13:18:06Z) - Dynamically Emergent Quantum Thermodynamics: Non-Markovian Otto Cycle [49.1574468325115]
We revisit the thermodynamic behavior of the quantum Otto cycle with a focus on memory effects and strong system-bath couplings.
Our investigation is based on an exact treatment of non-Markovianity by means of an exact quantum master equation.
arXiv Detail & Related papers (2023-08-18T11:00:32Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Suppressing coherence effects in quantum-measurement based engines [5.363106329253996]
We propose a universal framework to describe the thermodynamics of a quantum engine fueled by quantum projective measurements.
We show that replacing the standard hot thermal reservoir by a projective measurement operation could improve the performance of the quantum engine.
arXiv Detail & Related papers (2021-08-18T06:51:26Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Quantum corrections to the entropy in a driven quantum Brownian motion
model [2.28438857884398]
We study the von Neumann entropy of a particle undergoing quantum Brownian motion.
Our results bring important insights to the understanding of entropy in open quantum systems.
arXiv Detail & Related papers (2020-08-05T14:13:39Z) - Single-Atom Verification of the Information-Theoretical Bound of
Irreversibility at the Quantum Level [0.11242503819703256]
In a quantum mechanical fashion, we report the first theoretical prediction and experimental exploration of an information-theoretical bound on the entropy production.
Our finding is fundamental to any quantum thermodynamical process and indicates much difference and complexity in quantum thermodynamics with respect to the conventionally classical counterpart.
arXiv Detail & Related papers (2020-07-04T07:20:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.