Fast Grant Learning-Based Approach for Machine Type Communications with
NOMA
- URL: http://arxiv.org/abs/2009.00105v1
- Date: Mon, 31 Aug 2020 21:14:21 GMT
- Title: Fast Grant Learning-Based Approach for Machine Type Communications with
NOMA
- Authors: Manal El Tanab and Walaa Hamouda
- Abstract summary: We propose a non-orthogonal multiple access (NOMA)-based communication framework that allows machine type devices (MTDs) to access the network while avoiding congestion.
The proposed technique is a 2-step mechanism that first employs fast uplink grant to schedule the devices without sending a request to the base station (BS)
- Score: 19.975709017224585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a non-orthogonal multiple access (NOMA)-based
communication framework that allows machine type devices (MTDs) to access the
network while avoiding congestion. The proposed technique is a 2-step mechanism
that first employs fast uplink grant to schedule the devices without sending a
request to the base station (BS). Secondly, NOMA pairing is employed in a
distributed manner to reduce signaling overhead. Due to the limited capability
of information gathering at the BS in massive scenarios, learning techniques
are best fit for such problems. Therefore, multi-arm bandit learning is adopted
to schedule the fast grant MTDs. Then, constrained random NOMA pairing is
proposed that assists in decoupling the two main challenges of fast uplink
grant schemes namely, active set prediction and optimal scheduling. Using NOMA,
we were able to significantly reduce the resource wastage due to prediction
errors. Additionally, the results show that the proposed scheme can easily
attain the impractical optimal OMA performance, in terms of the achievable
rewards, at an affordable complexity.
Related papers
- Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
In Industry 4.0 systems, resource-constrained edge devices engage in frequent data interactions.
This paper proposes a digital twin (DT) and federated digital twin (FL) scheme.
The efficacy of our proposed cooperative interference-based FL process has been verified through numerical analysis.
arXiv Detail & Related papers (2024-11-04T17:48:02Z) - High Efficiency Inference Accelerating Algorithm for NOMA-based Mobile
Edge Computing [23.88527790721402]
Splitting the inference model between device, edge server, and cloud can improve the performance of EI greatly.
NOMA, which is the key supporting technologies of B5G/6G, can achieve massive connections and high spectrum efficiency.
We propose the effective communication and computing resource allocation algorithm to accelerate the model inference at edge.
arXiv Detail & Related papers (2023-12-26T02:05:52Z) - Deep Reinforcement Learning for Uplink Scheduling in NOMA-URLLC Networks [7.182684187774442]
This article addresses the problem of Ultra Reliable Low Communications (URLLC) in wireless networks, a framework with particularly stringent constraints imposed by many Internet of Things (IoT) applications from diverse sectors.
We propose a novel Deep Reinforcement Learning (DRL) scheduling algorithm, to solve the Non-Orthogonal Multiple Access (NOMA) uplink URLLC scheduling problem involving strict deadlines.
arXiv Detail & Related papers (2023-08-28T12:18:02Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
Terahertz (THz) wireless networks are expected to catalyze the beyond fifth generation (B5G) era.
To satisfy the ultra-reliability and low-latency demands of several B5G applications, novel mobility management approaches are required.
This article presents a holistic MAC layer approach that enables intelligent user association and resource allocation, as well as flexible and adaptive mobility management.
arXiv Detail & Related papers (2022-08-17T03:00:24Z) - Federated Learning for Energy-limited Wireless Networks: A Partial Model
Aggregation Approach [79.59560136273917]
limited communication resources, bandwidth and energy, and data heterogeneity across devices are main bottlenecks for federated learning (FL)
We first devise a novel FL framework with partial model aggregation (PMA)
The proposed PMA-FL improves 2.72% and 11.6% accuracy on two typical heterogeneous datasets.
arXiv Detail & Related papers (2022-04-20T19:09:52Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - Efficient Federated Meta-Learning over Multi-Access Wireless Networks [26.513076310183273]
Federated meta-learning (FML) has emerged as a promising paradigm to cope with the data limitation and heterogeneity challenges in today's edge learning arena.
This paper develops an FML algorithm (called NUFM) with a non-uniform device selection scheme to accelerate the convergence.
We propose a resource allocation problem integrating NUFM in multi-access wireless systems to jointly improve the convergence rate and minimize the wall-clock time along with energy cost.
arXiv Detail & Related papers (2021-08-14T03:23:04Z) - A Learning-Based Fast Uplink Grant for Massive IoT via Support Vector
Machines and Long Short-Term Memory [8.864453148536057]
3IoT introduced the need to use fast uplink grant (FUG) allocation in order to reduce latency and increase reliability for smart internet-of-things (mMTC) applications.
We propose a novel FUG allocation based on support machine scheduler (SVM)
Second, LSTM architecture is used for traffic prediction and correction techniques to overcome prediction errors.
arXiv Detail & Related papers (2021-08-02T11:33:02Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
We develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL)
We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner.
arXiv Detail & Related papers (2020-07-27T12:38:37Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.