Efficient Federated Meta-Learning over Multi-Access Wireless Networks
- URL: http://arxiv.org/abs/2108.06453v2
- Date: Tue, 17 Aug 2021 19:31:56 GMT
- Title: Efficient Federated Meta-Learning over Multi-Access Wireless Networks
- Authors: Sheng Yue, Ju Ren, Jiang Xin, Deyu Zhang, Yaoxue Zhang, Weihua Zhuang
- Abstract summary: Federated meta-learning (FML) has emerged as a promising paradigm to cope with the data limitation and heterogeneity challenges in today's edge learning arena.
This paper develops an FML algorithm (called NUFM) with a non-uniform device selection scheme to accelerate the convergence.
We propose a resource allocation problem integrating NUFM in multi-access wireless systems to jointly improve the convergence rate and minimize the wall-clock time along with energy cost.
- Score: 26.513076310183273
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated meta-learning (FML) has emerged as a promising paradigm to cope
with the data limitation and heterogeneity challenges in today's edge learning
arena. However, its performance is often limited by slow convergence and
corresponding low communication efficiency. In addition, since the available
radio spectrum and IoT devices' energy capacity are usually insufficient, it is
crucial to control the resource allocation and energy consumption when
deploying FML in practical wireless networks. To overcome the challenges, in
this paper, we rigorously analyze each device's contribution to the global loss
reduction in each round and develop an FML algorithm (called NUFM) with a
non-uniform device selection scheme to accelerate the convergence. After that,
we formulate a resource allocation problem integrating NUFM in multi-access
wireless systems to jointly improve the convergence rate and minimize the
wall-clock time along with energy cost. By deconstructing the original problem
step by step, we devise a joint device selection and resource allocation
strategy to solve the problem with theoretical guarantees. Further, we show
that the computational complexity of NUFM can be reduced from $O(d^2)$ to
$O(d)$ (with the model dimension $d$) via combining two first-order
approximation techniques. Extensive simulation results demonstrate the
effectiveness and superiority of the proposed methods in comparison with
existing baselines.
Related papers
- Federated Learning With Energy Harvesting Devices: An MDP Framework [5.852486435612777]
Federated learning (FL) requires edge devices to perform local training and exchange information with a parameter server.
A critical challenge in practical FL systems is the rapid energy depletion of battery-limited edge devices.
We apply energy harvesting technique in FL systems to extract ambient energy for continuously powering edge devices.
arXiv Detail & Related papers (2024-05-17T03:41:40Z) - Adaptive Decentralized Federated Learning in Energy and Latency Constrained Wireless Networks [4.03161352925235]
In Federated Learning (FL), with parameter aggregated by a central node, the communication overhead is a substantial concern.
Recent studies have introduced Decentralized Federated Learning (DFL) as a viable alternative.
We formulate a problem that minimizes the loss function of DFL while considering energy and latency constraints.
arXiv Detail & Related papers (2024-03-29T09:17:40Z) - Wirelessly Powered Federated Learning Networks: Joint Power Transfer,
Data Sensing, Model Training, and Resource Allocation [24.077525032187893]
Federated learning (FL) has found many successes in wireless networks.
implementation of FL has been hindered by the energy limitation of mobile devices (MDs) and the availability of training data at MDs.
How to integrate wireless power transfer and sustainable sustainable FL networks.
arXiv Detail & Related papers (2023-08-09T13:38:58Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
This work poses a distributed multi-resource allocation scheme for minimizing the weighted sum of latency and energy consumption in the on-device distributed federated learning (FL) system.
Each mobile device in the system engages the model training process within the specified area and allocates its computation and communication resources for deriving and uploading parameters, respectively.
arXiv Detail & Related papers (2022-11-01T14:16:05Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
We propose a hybrid federated split learning framework in wireless networks.
We design a parallel computing scheme for model splitting without label sharing, and theoretically analyze the influence of the delayed gradient caused by the scheme on the convergence speed.
arXiv Detail & Related papers (2022-09-02T10:29:56Z) - Federated Learning for Energy-limited Wireless Networks: A Partial Model
Aggregation Approach [79.59560136273917]
limited communication resources, bandwidth and energy, and data heterogeneity across devices are main bottlenecks for federated learning (FL)
We first devise a novel FL framework with partial model aggregation (PMA)
The proposed PMA-FL improves 2.72% and 11.6% accuracy on two typical heterogeneous datasets.
arXiv Detail & Related papers (2022-04-20T19:09:52Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Resource-constrained Federated Edge Learning with Heterogeneous Data:
Formulation and Analysis [8.863089484787835]
We propose a distributed approximate Newton-type Newton-type training scheme, namely FedOVA, to solve the heterogeneous statistical challenge brought by heterogeneous data.
FedOVA decomposes a multi-class classification problem into more straightforward binary classification problems and then combines their respective outputs using ensemble learning.
arXiv Detail & Related papers (2021-10-14T17:35:24Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.