論文の概要: Improved Weighted Random Forest for Classification Problems
- arxiv url: http://arxiv.org/abs/2009.00534v1
- Date: Tue, 1 Sep 2020 16:08:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-23 00:44:19.610141
- Title: Improved Weighted Random Forest for Classification Problems
- Title(参考訳): 分類問題に対する改良型ランダムフォレスト
- Authors: Mohsen Shahhosseini, Guiping Hu
- Abstract要約: 優れたアンサンブルモデルを作るための鍵は、ベースモデルの多様性にある。
そこで本研究では,正規林の重み付け戦略を改良するアルゴリズムを提案する。
提案したモデルでは,通常のランダム林に比べて大幅な改善が可能である。
- 参考スコア(独自算出の注目度): 3.42658286826597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Several studies have shown that combining machine learning models in an
appropriate way will introduce improvements in the individual predictions made
by the base models. The key to make well-performing ensemble model is in the
diversity of the base models. Of the most common solutions for introducing
diversity into the decision trees are bagging and random forest. Bagging
enhances the diversity by sampling with replacement and generating many
training data sets, while random forest adds selecting a random number of
features as well. This has made the random forest a winning candidate for many
machine learning applications. However, assuming equal weights for all base
decision trees does not seem reasonable as the randomization of sampling and
input feature selection may lead to different levels of decision-making
abilities across base decision trees. Therefore, we propose several algorithms
that intend to modify the weighting strategy of regular random forest and
consequently make better predictions. The designed weighting frameworks include
optimal weighted random forest based on ac-curacy, optimal weighted random
forest based on the area under the curve (AUC), performance-based weighted
random forest, and several stacking-based weighted random forest models. The
numerical results show that the proposed models are able to introduce
significant improvements compared to regular random forest.
- Abstract(参考訳): いくつかの研究では、機械学習モデルを適切な方法で組み合わせることで、ベースモデルによる個々の予測を改善することが示されている。
優れたアンサンブルモデルを作るための鍵は、ベースモデルの多様性にある。
決定木に多様性を導入する最も一般的な解決策は、バグングとランダムな森林である。
Baggingは、多くのトレーニングデータセットをリプレースして生成することで多様性を高め、ランダムフォレストはランダムな数の特徴も追加する。
これにより、ランダムフォレストは多くの機械学習アプリケーションの勝者候補となった。
しかしながら、全てのベース決定木に対して等しい重みを仮定することは、サンプリングと入力特徴の選択のランダム化がベース決定木全体の意思決定能力の異なるレベルをもたらす可能性があるため、合理的ではないように思える。
そこで本研究では,ランダム林の重み付け戦略を改良し,予測精度を向上させるアルゴリズムを提案する。
設計された重み付けフレームワークには、アク精度に基づく最適重み付けランダム林、曲線(AUC)に基づく最適重み付けランダム林、性能に基づく重み付けランダム林、およびいくつかの積み重ねベースの重み付けランダム林モデルが含まれる。
数値的な結果から,提案モデルでは,通常のランダム林に比べ,大幅な改善が期待できることがわかった。
関連論文リスト
- Binary Classification: Is Boosting stronger than Bagging? [5.877778007271621]
本稿では,バニラ・ランダム・フォレストの拡張である拡張ランダム・フォレストを紹介し,付加機能と適応サンプルおよびモデル重み付けについて述べる。
トレーニングサンプルの重み付けを適応するための反復アルゴリズムを開発し、最も難しい例を選好し、新しいサンプルごとに個別の木の重み付け手法を見つけるためのアプローチを開発した。
本手法は15の異なる二分分類データセットにまたがる通常のランダムフォレストを著しく改善し,XGBoostを含む他の木法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-24T23:22:33Z) - Scalable Ensemble Diversification for OOD Generalization and Detection [68.8982448081223]
SEDは、ハエのハードトレーニングサンプルを特定し、アンサンブルメンバーにこれらについて意見の一致を奨励する。
モデル間でのペアの相違を解消する既存の方法において,コストのかかる計算を避ける方法を示す。
OODの一般化のために,出力空間(古典的)アンサンブルや重量空間アンサンブル(モデルスープ)など,複数の環境での多様化による大きなメリットを観察する。
論文 参考訳(メタデータ) (2024-09-25T10:30:24Z) - ForensicsForest Family: A Series of Multi-scale Hierarchical Cascade Forests for Detecting GAN-generated Faces [53.739014757621376]
我々は,GAN生成顔を検出するために,EmforensicsForest Familyと呼ばれる簡易かつ効果的な森林法について述べる。
ForenscisForestは、新しく提案された多層階層のカスケード林である。
Hybrid ForensicsForestはCNNレイヤをモデルに統合する。
Divide-and-Conquer ForensicsForestは、トレーニングサンプリングの一部のみを使用して、森林モデルを構築することができる。
論文 参考訳(メタデータ) (2023-08-02T06:41:19Z) - Contextual Decision Trees [62.997667081978825]
学習アンサンブルの1つの浅い木を特徴量ベースで選択するための,マルチアームのコンテキスト付きバンドレコメンデーションフレームワークを提案する。
トレーニングされたシステムはランダムフォレスト上で動作し、最終的な出力を提供するためのベース予測器を動的に識別する。
論文 参考訳(メタデータ) (2022-07-13T17:05:08Z) - An Approximation Method for Fitted Random Forests [0.0]
本研究では,葉にデータポイントを割り当てたランダムフォレストモデルを用いて,各木を近似する手法について検討した。
具体的には,多項ロジスティック回帰の適合が予測品質を保ちながらサイズを減少させるかどうかを考察することから始める。
論文 参考訳(メタデータ) (2022-07-05T17:28:52Z) - On Uncertainty Estimation by Tree-based Surrogate Models in Sequential
Model-based Optimization [13.52611859628841]
予測不確実性推定の観点から,ランダム化木の様々なアンサンブルを再検討し,その挙動について検討する。
BwO林と呼ばれる無作為な樹木のアンサンブルを構築するための新しい手法を提案する。
実験により,既存の樹木モデルに対するBwO林の有効性と性能について様々な状況で検証した。
論文 参考訳(メタデータ) (2022-02-22T04:50:37Z) - Ensembles of Double Random Forest [1.7205106391379026]
二重ランダム森林のアンサンブルを生成するための2つの手法を提案する。
第1のアプローチでは、二重ランダム森林の回転に基づくアンサンブルを提案する。
第2のアプローチでは、二重ランダム森林の斜めアンサンブルを提案する。
論文 参考訳(メタデータ) (2021-11-03T04:19:41Z) - Minimax Rates for High-Dimensional Random Tessellation Forests [0.0]
モンドリアン林は、任意の次元でミニマックスレートが得られた最初のランダム林である。
概略分割方向を持つ多種多様なランダム林は任意の次元における最小収束率も達成できることを示す。
論文 参考訳(メタデータ) (2021-09-22T06:47:38Z) - Making CNNs Interpretable by Building Dynamic Sequential Decision
Forests with Top-down Hierarchy Learning [62.82046926149371]
本稿では,CNN(Convlutional Neural Networks)を解釈可能なモデル転送方式を提案する。
我々は、CNNの上に微分可能な意思決定林を構築することで、これを実現する。
DDSDF(Dep Dynamic Sequential Decision Forest)と命名する。
論文 参考訳(メタデータ) (2021-06-05T07:41:18Z) - Stochastic Optimization Forests [60.523606291705214]
標準的なランダムな森林アルゴリズムのように予測精度を向上させるために分割するのではなく、分割を選択した木を栽培し、下流の意思決定品質を直接最適化することで、森林決定政策の訓練方法を示す。
概略分割基準は、各候補分割に対して正確に最適化された森林アルゴリズムに近い性能を保ちながら、100倍のランニング時間を短縮できることを示す。
論文 参考訳(メタデータ) (2020-08-17T16:56:06Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
変分分布とは異なる後部近似を用いて意思決定を行うことが示唆された。
これらの理論的な結果から,最適モデルに関するいくつかの近似的提案を学習することを提案する。
おもちゃの例に加えて,単細胞RNAシークエンシングのケーススタディも紹介する。
論文 参考訳(メタデータ) (2020-02-17T19:23:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。