論文の概要: Contextual Decision Trees
- arxiv url: http://arxiv.org/abs/2207.06355v1
- Date: Wed, 13 Jul 2022 17:05:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-14 12:20:42.473336
- Title: Contextual Decision Trees
- Title(参考訳): 文脈決定木
- Authors: Tommaso Aldinucci and Enrico Civitelli and Leonardo di Gangi and
Alessandro Sestini
- Abstract要約: 学習アンサンブルの1つの浅い木を特徴量ベースで選択するための,マルチアームのコンテキスト付きバンドレコメンデーションフレームワークを提案する。
トレーニングされたシステムはランダムフォレスト上で動作し、最終的な出力を提供するためのベース予測器を動的に識別する。
- 参考スコア(独自算出の注目度): 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Focusing on Random Forests, we propose a multi-armed contextual bandit
recommendation framework for feature-based selection of a single shallow tree
of the learned ensemble. The trained system, which works on top of the Random
Forest, dynamically identifies a base predictor that is responsible for
providing the final output. In this way, we obtain local interpretations by
observing the rules of the recommended tree. The carried out experiments reveal
that our dynamic method is superior to an independent fitted CART decision tree
and comparable to the whole black-box Random Forest in terms of predictive
performances.
- Abstract(参考訳): ランダムフォレストに着目し,学習したアンサンブルの1本の浅い木を特徴量ベースで選択する,マルチアームのコンテキスト型バンドイットレコメンデーションフレームワークを提案する。
トレーニングされたシステムはランダムフォレスト上で動作し、最終的な出力を提供するためのベース予測器を動的に識別する。
このように、推奨木の規則を観察することで、局所的な解釈を得る。
実験の結果,我々の動的手法は独立したCART決定木よりも優れており,予測性能の面ではブラックボックスのランダムフォレスト全体に匹敵することがわかった。
関連論文リスト
- Exogenous Randomness Empowering Random Forests [4.396860522241306]
平均二乗誤差(MSE)を個々の木と森林の両方に対して非漸近展開する。
以上の結果から,サブサンプリングは個々の樹木に比べて,ランダム林の偏りや分散を減少させることが明らかとなった。
ノイズ特性の存在は、ランダムな森林の性能を高める上で「祝福」として機能する。
論文 参考訳(メタデータ) (2024-11-12T05:06:10Z) - Learning Deep Tree-based Retriever for Efficient Recommendation: Theory and Method [76.31185707649227]
効率的なレコメンデーションのために,Deep Tree-based Retriever (DTR)を提案する。
DTRは、トレーニングタスクを、同じレベルでツリーノード上のソフトマックスベースのマルチクラス分類としてフレーム化している。
非リーフノードのラベル付けによって引き起こされる準最適性を緩和するため、損失関数の補正法を提案する。
論文 参考訳(メタデータ) (2024-08-21T05:09:53Z) - Why do Random Forests Work? Understanding Tree Ensembles as
Self-Regularizing Adaptive Smoothers [68.76846801719095]
統計学で広く普及している偏りと分散還元に対する現在の高次二分法は、木のアンサンブルを理解するには不十分である、と我々は主張する。
森林は、通常暗黙的に絡み合っている3つの異なるメカニズムによって、樹木を改良できることを示す。
論文 参考訳(メタデータ) (2024-02-02T15:36:43Z) - Social Interpretable Tree for Pedestrian Trajectory Prediction [75.81745697967608]
本稿では,このマルチモーダル予測課題に対処するため,SIT(Social Interpretable Tree)と呼ばれる木に基づく手法を提案する。
木の根から葉までの経路は、個々の将来の軌跡を表す。
ETH-UCYとStanford Droneのデータセットによる実験結果からは,手作り木にもかかわらず,我々の手法が最先端の手法の性能に適合または超えることを示した。
論文 参考訳(メタデータ) (2022-05-26T12:18:44Z) - An Efficient Dynamic Sampling Policy For Monte Carlo Tree Search [0.0]
我々は、強化学習の枠組みであるモンテカルロ木探索(MCTS)の中で、人気の木に基づく探索戦略を考える。
本稿では,木根ノードにおける最適な行動の選択の確率を最大化するために,限られた計算予算を効率的に割り当てる動的サンプリングツリーポリシーを提案する。
論文 参考訳(メタデータ) (2022-04-26T02:39:18Z) - Explaining random forest prediction through diverse rulesets [0.0]
Local Tree eXtractor (LTreeX)は、与えられたテストインスタンスのフォレスト予測を、いくつかの異なるルールで説明することができる。
提案手法は予測性能の点で他の説明可能な手法よりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2022-03-29T12:54:57Z) - Making CNNs Interpretable by Building Dynamic Sequential Decision
Forests with Top-down Hierarchy Learning [62.82046926149371]
本稿では,CNN(Convlutional Neural Networks)を解釈可能なモデル転送方式を提案する。
我々は、CNNの上に微分可能な意思決定林を構築することで、これを実現する。
DDSDF(Dep Dynamic Sequential Decision Forest)と命名する。
論文 参考訳(メタデータ) (2021-06-05T07:41:18Z) - Improved Weighted Random Forest for Classification Problems [3.42658286826597]
優れたアンサンブルモデルを作るための鍵は、ベースモデルの多様性にある。
そこで本研究では,正規林の重み付け戦略を改良するアルゴリズムを提案する。
提案したモデルでは,通常のランダム林に比べて大幅な改善が可能である。
論文 参考訳(メタデータ) (2020-09-01T16:08:45Z) - Rectified Decision Trees: Exploring the Landscape of Interpretable and
Effective Machine Learning [66.01622034708319]
我々は,reDT(rerectified decision tree)と呼ばれる知識蒸留に基づく決定木拡張を提案する。
我々は,ソフトラベルを用いたトレーニングを可能にする標準決定木の分割基準と終了条件を拡張した。
次に,教師モデルから抽出したソフトラベルに基づいて,新しいジャックニフェ法を用いてReDTを訓練する。
論文 参考訳(メタデータ) (2020-08-21T10:45:25Z) - Optimal survival trees ensemble [0.0]
近年の研究では、分類と回帰問題のためのアンサンブル内での個人的または集団的パフォーマンスに基づいて、正確で多様な木を選択するアプローチが採用されている。
この研究は、これらの調査のきっかけに続き、最適な生存樹の森を成長させる可能性について考察する。
予測性能の向上に加えて,本手法はアンサンブル内の生存木数を削減する。
論文 参考訳(メタデータ) (2020-05-18T19:28:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。