Online system identification in a Duffing oscillator by free energy
minimisation
- URL: http://arxiv.org/abs/2009.00845v1
- Date: Wed, 2 Sep 2020 06:51:56 GMT
- Title: Online system identification in a Duffing oscillator by free energy
minimisation
- Authors: Wouter M Kouw
- Abstract summary: Online system identification is used to estimate parameters of a dynamical system.
The proposed inference procedure performs as well as offline prediction error minimisation in a state-of-the-art nonlinear model.
- Score: 7.1577508803778045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Online system identification is the estimation of parameters of a dynamical
system, such as mass or friction coefficients, for each measurement of the
input and output signals. Here, the nonlinear stochastic differential equation
of a Duffing oscillator is cast to a generative model and dynamical parameters
are inferred using variational message passing on a factor graph of the model.
The approach is validated with an experiment on data from an electronic
implementation of a Duffing oscillator. The proposed inference procedure
performs as well as offline prediction error minimisation in a state-of-the-art
nonlinear model.
Related papers
- Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems [3.1484174280822845]
We focus on finding parsimonious ordinary differential equation (ODE) models for nonlinear, noisy, and non-autonomous dynamical systems.
Our method, dynamic SINDy, combines variational inference with SINDy (sparse identification of nonlinear dynamics) to model time-varying coefficients of sparse ODEs.
arXiv Detail & Related papers (2024-10-02T23:00:00Z) - A method for identifying causality in the response of nonlinear dynamical systems [0.0]
Building data-driven models requires experimental measurements of the system input and output.
It can be difficult to determine whether inaccuracies in the model stem from modelling errors or noise.
This paper presents a novel method to identify the causal component of the input-output data from measurements of a system in the presence of output noise.
arXiv Detail & Related papers (2024-09-26T14:19:07Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - GibbsDDRM: A Partially Collapsed Gibbs Sampler for Solving Blind Inverse
Problems with Denoising Diffusion Restoration [64.8770356696056]
We propose GibbsDDRM, an extension of Denoising Diffusion Restoration Models (DDRM) to a blind setting in which the linear measurement operator is unknown.
The proposed method is problem-agnostic, meaning that a pre-trained diffusion model can be applied to various inverse problems without fine-tuning.
arXiv Detail & Related papers (2023-01-30T06:27:48Z) - Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations [114.17826109037048]
Ordinary Differential Equations (ODEs) have recently gained a lot of attention in machine learning.
theoretical aspects, e.g., identifiability and properties of statistical estimation are still obscure.
This paper derives a sufficient condition for the identifiability of homogeneous linear ODE systems from a sequence of equally-spaced error-free observations sampled from a single trajectory.
arXiv Detail & Related papers (2022-10-12T06:46:38Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
We revisit a model for time-varying linear regression that assumes the unknown parameters evolve according to a linear dynamical system.
Counterintuitively, we show that when the underlying dynamics are stable the parameters of this model can be estimated from data by combining just two ordinary least squares estimates.
arXiv Detail & Related papers (2021-12-29T23:37:06Z) - Coarse-Grained Nonlinear System Identification [0.0]
We introduce Coarse-Grained Dynamics, an efficient and universal parameterization of nonlinear system dynamics based on the Volterra series expansion.
We demonstrate the properties of this approach on a simple synthetic problem.
We also demonstrate this approach experimentally, showing that it identifies an accurate model of the nonlinear voltage to dynamics of a tungsten filament with less than a second of experimental data.
arXiv Detail & Related papers (2020-10-14T06:45:51Z) - Derivative-Based Koopman Operators for Real-Time Control of Robotic
Systems [14.211417879279075]
This paper presents a generalizable methodology for data-driven identification of nonlinear dynamics that bounds the model error.
We construct a Koopman operator-based linear representation and utilize Taylor series accuracy analysis to derive an error bound.
When combined with control, the Koopman representation of the nonlinear system has marginally better performance than competing nonlinear modeling methods.
arXiv Detail & Related papers (2020-10-12T15:15:13Z) - Bayesian differential programming for robust systems identification
under uncertainty [14.169588600819546]
This paper presents a machine learning framework for Bayesian systems identification from noisy, sparse and irregular observations of nonlinear dynamical systems.
The proposed method takes advantage of recent developments in differentiable programming to propagate gradient information through ordinary differential equation solvers.
The use of sparsity-promoting priors enables the discovery of interpretable and parsimonious representations for the underlying latent dynamics.
arXiv Detail & Related papers (2020-04-15T00:51:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.