Heat transport in overdamped quantum systems
- URL: http://arxiv.org/abs/2009.00904v1
- Date: Wed, 2 Sep 2020 08:55:17 GMT
- Title: Heat transport in overdamped quantum systems
- Authors: Sadeq S. Kadijani, Thomas L. Schmidt, Massimiliano Esposito, Nahuel
Freitas
- Abstract summary: We show how to evaluate both contributions by taking advantage of the time scale separation associated with the overdamped regime.
We find that non-trivial quantum corrections survive even when the temperatures are high compared to the frequency scale relevant for the overdamped dynamics of the system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We obtain an analytical expression for the heat current between two
overdamped quantum oscillators interacting with local thermal baths at
different temperatures. The total heat current is split into classical and
quantum contributions. We show how to evaluate both contributions by taking
advantage of the time scale separation associated with the overdamped regime,
and without assuming the usual weak coupling and Markovian approximations. We
find that non-trivial quantum corrections survive even when the temperatures
are high compared to the frequency scale relevant for the overdamped dynamics
of the system.
Related papers
- Divergence of thermalization rates driven by the competition between finite temperature and quantum coherence [10.256367888517563]
We observe a divergence of thermalization rates of quantum matters when the temperature approaches zero.
We find that the quantum coherence and bosonic stimulation of superfluid induces the divergence while the finite temperature and the many-body interactions are suppressing the divergence.
arXiv Detail & Related papers (2024-10-30T02:10:29Z) - Smooth Crossover Between Weak and Strong Thermalization using Rigorous Bounds on Equilibration of Isolated Systems [2.3353925077667923]
We show that weak thermalization can be understood to be due to the small effective dimension of the initial state.
We show that the fluctuations decay exponentially with the system size for both weak and strong thermalization.
arXiv Detail & Related papers (2023-10-20T10:03:49Z) - Nonlocal thermoelectric detection of interaction and correlations in
edge states [62.997667081978825]
We propose the nonlocal thermoelectric response as a direct indicator of the presence of interactions, nonthermal states and the effect of correlations.
A setup with two controllable quantum point contacts allows thermoelectricity to monitor the interacting system thermalisation.
arXiv Detail & Related papers (2023-07-18T16:28:59Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - Emergent pair localization in a many-body quantum spin system [0.0]
Generically, non-integrable quantum systems are expected to thermalize as they comply with the Eigenstate Thermalization Hypothesis.
In the presence of strong disorder, the dynamics can possibly slow down to a degree that systems fail to thermalize on experimentally accessible timescales.
We study an ensemble of Heisenberg spins with a tunable distribution of random coupling strengths realized by a Rydberg quantum simulator.
arXiv Detail & Related papers (2022-07-28T16:31:18Z) - Heat transport and rectification via quantum statistical and coherence
asymmetries [0.0]
We show that heat rectification is possible even with symmetric medium-bath couplings if the two baths differ in quantum statistics or coherence.
Our results can be significant for heat management in hybrid open quantum systems or solid-state thermal circuits.
arXiv Detail & Related papers (2022-04-14T15:59:03Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Observation of strong and weak thermalization in a superconducting
quantum processor [24.685988382662803]
We study the ergodic dynamics of a 1D array of 12 superconducting qubits with a transverse field.
We identify the regimes of strong and weak thermalization with different initial states.
arXiv Detail & Related papers (2021-02-17T05:48:29Z) - Quantum transient heat transport in the hyper-parametric oscillator [0.0]
We explore nonequilibrium quantum heat transport in nonlinear bosonic systems in the presence of a non-Kerr-type interaction.
Our findings may help in the manipulation of quantum states using the system's interactions to induce cooling.
arXiv Detail & Related papers (2020-11-05T05:05:36Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.