論文の概要: An Information-Theoretic Approach to Persistent Environment Monitoring
Through Low Rank Model Based Planning and Prediction
- arxiv url: http://arxiv.org/abs/2009.01168v1
- Date: Wed, 2 Sep 2020 16:19:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-22 19:36:34.879168
- Title: An Information-Theoretic Approach to Persistent Environment Monitoring
Through Low Rank Model Based Planning and Prediction
- Title(参考訳): 低ランクモデルに基づく計画・予測による持続環境モニタリングへの情報理論的アプローチ
- Authors: Elizabeth A. Ricci, Madeleine Udell, Ross A. Knepper
- Abstract要約: 本研究では,大面積の観測点を限定的に選択する手法を提案する。
対象属性の低ランクモデルと情報最大化パスプランナを組み合わせて,属性の状態を予測する。
2つの実環境データセットのシミュレーションにおいて,本手法の評価を行った。
- 参考スコア(独自算出の注目度): 19.95989053853125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robots can be used to collect environmental data in regions that are
difficult for humans to traverse. However, limitations remain in the size of
region that a robot can directly observe per unit time. We introduce a method
for selecting a limited number of observation points in a large region, from
which we can predict the state of unobserved points in the region. We combine a
low rank model of a target attribute with an information-maximizing path
planner to predict the state of the attribute throughout a region. Our approach
is agnostic to the choice of target attribute and robot monitoring platform. We
evaluate our method in simulation on two real-world environment datasets, each
containing observations from one to two million possible sampling locations. We
compare against a random sampler and four variations of a baseline sampler from
the ecology literature. Our method outperforms the baselines in terms of
average Fisher information gain per samples taken and performs comparably for
average reconstruction error in most trials.
- Abstract(参考訳): ロボットは、人間が横断するのが難しい地域で環境データを収集するために使用できる。
しかし、ロボットが単位時間あたり直接観察できる領域の大きさには制限が残っている。
本研究では,広域領域における観測点数を限定し,その領域における観測点数を予測できる手法を提案する。
対象属性の低ランクモデルと情報最大化パスプランナーを組み合わせることで、地域全体の属性の状態を予測する。
我々のアプローチは、ターゲット属性とロボット監視プラットフォームの選択に非依存である。
2つの実環境データセットをシミュレーションし,それぞれ100万から200万のサンプリング地点から観測を行った。
我々は, ランダムサンプリングと, 生態学文献からのベースラインサンプリングの4つのバリエーションを比較した。
本手法は,漁獲サンプル当たりの平均漁業情報ゲインでベースラインを上回り,ほとんどの試験で平均復元誤差を比較可能とした。
関連論文リスト
- Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
本稿では、下流知識と事前学習指導のデータ相互作用をトレースするダウンストリーム・プレテキスト・ドメイン知識トレース(DOKT)手法を提案する。
DOKTは、トレースバックの多様性指標とドメインベースの不確実性推定器から構成される。
10のデータセットで行った実験は、我々のモデルが他の最先端の手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2024-07-20T01:34:13Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
自己組織化マップ(SOM)におけるトポロジカルプロジェクションに基づく半教師付き学習手法を提案する。
提案手法は,まずラベル付きデータ上でSOMを訓練し,最小限のラベル付きデータポイントをキーベストマッチングユニット(BMU)に割り当てる。
提案した最小教師付きモデルが従来の回帰手法を大幅に上回ることを示す。
論文 参考訳(メタデータ) (2024-01-12T22:51:48Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
弱点アノテーションを用いたドメイン適応型シナプス検出のためのフレームワークであるAdaSynを提案する。
I SBI 2023のWASPSYNチャレンジでは、我々の手法が第1位にランクインした。
論文 参考訳(メタデータ) (2023-08-31T05:05:53Z) - A Global Model Approach to Robust Few-Shot SAR Automatic Target
Recognition [6.260916845720537]
ディープラーニングベースのSAR自動ターゲット認識(ATR)モデルをトレーニングするために、クラス毎に数百のラベル付きサンプルを収集できるとは限らない。
この研究は特に数発のSAR ATR問題に対処しており、興味のあるタスクをサポートするためにラベル付きサンプルがわずかである。
論文 参考訳(メタデータ) (2023-03-20T00:24:05Z) - A Novel Dataset for Evaluating and Alleviating Domain Shift for Human
Detection in Agricultural Fields [59.035813796601055]
トレーニングセットの分布外のデータに展開した場合、ドメインシフトが、よく知られたオブジェクト検出データセット上で訓練された人間の検出モデルに与える影響を評価する。
我々は、ロボットティプラットフォームを用いて、農業ロボット応用の文脈で収集されたOpenDR Humans in Fieldデータセットを紹介した。
論文 参考訳(メタデータ) (2022-09-27T07:04:28Z) - Wireless Channel Prediction in Partially Observed Environments [10.803318254625687]
サイト固有の無線周波数(RF)伝搬予測は、カメラやLIDARセンサーなどの視覚データから構築されたモデルにますます依存している。
本稿では,周辺環境の部分的な観測から,統計的チャネルモデルを抽出する手法を提案する。
提案手法は, 部分的な情報が得られない場合に完全に統計モデルと, 環境が完全に観察された場合に完全に決定論的モデルとを補間できることを示す。
論文 参考訳(メタデータ) (2022-07-03T01:46:57Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
本研究では,都市環境における歩行者位置予測を目的とした,簡易かつ効果的な歩行者軌道予測モデルを提案する。
我々のモデルは、複数のアテンションブロックとトランスフォーマーを反復的に実行できるニューラルネットワークアーキテクチャである。
ソーシャルマスク, 動的モデル, ソーシャルプーリング層, 複雑なグラフのような構造を明示的に導入することなく, SoTAモデルと同等の結果が得られることを示す。
論文 参考訳(メタデータ) (2022-06-29T07:49:48Z) - Scalable Multi-Robot System for Non-myopic Spatial Sampling [9.37678298330157]
本稿では,空間場の非一様サンプリングのためのスケーラブルな分散マルチロボット計画アルゴリズムを提案する。
我々は,複数のロボット間のコミュニケーションがチーム全体のサンプリング性能に与える影響を,独立して分析する。
論文 参考訳(メタデータ) (2021-05-20T20:30:10Z) - TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain
Gait Recognition [77.77786072373942]
本稿では、教師なしクロスドメイン歩行認識のための領域ギャップを橋渡しするTransferable Neighborhood Discovery (TraND) フレームワークを提案する。
我々は、潜在空間におけるラベルなしサンプルの自信ある近傍を自動的に発見するために、エンドツーエンドのトレーニング可能なアプローチを設計する。
提案手法は,CASIA-BとOU-LPの2つの公開データセットに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2021-02-09T03:07:07Z) - Learning excursion sets of vector-valued Gaussian random fields for
autonomous ocean sampling [0.41998444721319217]
本研究では,複数の応答の所定のしきい値を超える同時超過によって定義される領域を特徴付けるための効率的な空間サンプリング手法を開発した。
具体的には,ベクトル値を持つガウス確率場の抽出の不確実性に基づく設計基準を定義する。
我々は、この基準が不明瞭な場所でのサンプリング作業の優先順位付けにどのように使われるかを示し、探索をより効果的にする。
論文 参考訳(メタデータ) (2020-07-07T18:23:46Z) - A flexible outlier detector based on a topology given by graph
communities [0.0]
異常検出は機械学習手法と統計的予測モデルの最適性能に不可欠である。
トポロジーは、特徴空間内の互いに隣接する近傍を成す重み付きグラフのコミュニティを用いて計算される。
当社のアプローチは、ローカル戦略とグローバル戦略の両方において、複数のビュー設定と単一ビュー設定で総合的に優れています。
論文 参考訳(メタデータ) (2020-02-18T18:40:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。