Realization of a Bosonic Antiferromagnet
- URL: http://arxiv.org/abs/2009.01426v2
- Date: Tue, 20 Jul 2021 03:08:09 GMT
- Title: Realization of a Bosonic Antiferromagnet
- Authors: Hui Sun, Bing Yang, Han-Yi Wang, Zhao-Yu Zhou, Guo-Xian Su, Han-Ning
Dai, Zhen-Sheng Yuan, and Jian-Wei Pan
- Abstract summary: We create a one-dimensional Heisenberg antiferromagnet with ultracold bosons.
Compared with condensed matter systems, ultracold gases in optical lattices can be microscopically engineered and measured.
- Score: 6.2669932229958345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum antiferromagnets are of broad interest in condensed matter physics as
they provide a platform for studying exotic many-body states including spin
liquids and high-temperature superconductors. Here, we report on the creation
of a one-dimensional Heisenberg antiferromagnet with ultracold bosons. In a
two-component Bose-Hubbard system, we switch the sign of the spin-exchange
interaction and realize the isotropic antiferromagnetic Heisenberg model in an
extended 70-site chain. Starting from a low-entropy N\'eel-ordered state, we
use optimized adiabatic passage to approach the bosonic antiferromagnet. We
demonstrate the establishment of antiferromagnetism by probing the evolution of
the staggered magnetization and spin correlations of the system. Compared with
condensed matter systems, ultracold gases in optical lattices can be
microscopically engineered and measured, offering significant advantages for
exploring bosonic magnetism and spin dynamics.
Related papers
- Realizing Altermagnetism in Fermi-Hubbard Models with Ultracold Atoms [0.0]
We show how a d-wave altermagnetic phase can be realized with ultracold fermionic atoms in optical lattices.
One of the defining characteristics of altermagnetism, the anisotropic spin transport, can be probed with trap-expansion experiments.
arXiv Detail & Related papers (2023-12-15T19:01:20Z) - Observation and control of hybrid spin-wave-Meissner-current transport
modes [0.0]
Superconductors are materials with zero electrical resistivity and the ability to expel magnetic fields known as the Meissner effect.
We use superconducting diamagnetism to shape the magnetic environment governing the transport of spin waves in a thin-film magnet.
Our results demonstrate the versatility of superconductor-manipulated spin-wave transport and have potential applications in spin-wave gratings, filters, crystals and cavities.
arXiv Detail & Related papers (2023-07-14T19:05:51Z) - Imaging magnetism evolution of magnetite to megabar pressure range with
quantum sensors in diamond anvil cell [57.91882523720623]
We develop an in-situ magnetic detection technique at megabar pressures with high sensitivity and sub-microscale spatial resolution.
We observe the macroscopic magnetic transition of Fe3O4 in the megabar pressure range from strong ferromagnetism (alpha-Fe3O4) to weak ferromagnetism (beta-Fe3O4) and finally to non-magnetism (gamma-Fe3O4)
The presented method can potentially investigate the spin-orbital coupling and magnetism-superconductivity competition in magnetic systems.
arXiv Detail & Related papers (2023-06-13T15:19:22Z) - Topological Superconductivity in Two-Dimensional Altermagnetic Metals [1.779681639954815]
We study the effect of altermagnetism on the superconductivity of a two-dimensional metal with d-wave altermagnetism and Rashba spin-orbital coupling.
We show that a number of topological superconductors, including both first-order and second-order ones, can emerge when the p-wave pairing dominates.
arXiv Detail & Related papers (2023-05-17T18:00:00Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - A hybrid ferromagnetic transmon qubit: circuit design, feasibility and
detection protocols for magnetic fluctuations [45.82374977939355]
We show that the characteristic hysteretic behavior of the ferromagnetic barrier provides an alternative and intrinsically digital tuning of the qubit frequency by means of magnetic field pulses.
The possibility to use the qubit as a noise detector and its relevance to investigate the subtle interplay of magnetism and superconductivity is envisaged.
arXiv Detail & Related papers (2022-06-01T18:50:26Z) - Nanoscale magnetism probed in a matter-wave interferometer [0.0]
We study alkali atoms, organic radicals and fullerenes in the same device, with magnetic moments ranging from a Bohr magneton to less than a nuclear magneton.
We find evidence for magnetization of a supersonic beam of organic radicals and, most notably, observe a strong magnetic response of a thermal C$_60$ beam consistent with high-temperature atom-like deflection of rotational magnetic moments.
arXiv Detail & Related papers (2022-03-22T16:42:48Z) - Understanding the propagation of excitations in quantum spin chains with
different kind of interactions [68.8204255655161]
It is shown that the inhomogeneous chains are able to transfer excitations with near perfect fidelity.
It is shown that both designed chains have in common a partially ordered spectrum and well localized eigenvectors.
arXiv Detail & Related papers (2021-12-31T15:09:48Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.