Nanoscale magnetism probed in a matter-wave interferometer
- URL: http://arxiv.org/abs/2203.11866v1
- Date: Tue, 22 Mar 2022 16:42:48 GMT
- Title: Nanoscale magnetism probed in a matter-wave interferometer
- Authors: Yaakov Y. Fein, Sebastian Pedalino, Armin Shayeghi, Filip Kia{\l}ka,
Stefan Gerlich, Markus Arndt
- Abstract summary: We study alkali atoms, organic radicals and fullerenes in the same device, with magnetic moments ranging from a Bohr magneton to less than a nuclear magneton.
We find evidence for magnetization of a supersonic beam of organic radicals and, most notably, observe a strong magnetic response of a thermal C$_60$ beam consistent with high-temperature atom-like deflection of rotational magnetic moments.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore a wide range of fundamental magnetic phenomena by measuring the
dephasing of matter-wave interference fringes upon application of a variable
magnetic gradient. The versatility of our interferometric Stern-Gerlach
technique enables us to study alkali atoms, organic radicals and fullerenes in
the same device, with magnetic moments ranging from a Bohr magneton to less
than a nuclear magneton. We find evidence for magnetization of a supersonic
beam of organic radicals and, most notably, observe a strong magnetic response
of a thermal C$_{60}$ beam consistent with high-temperature atom-like
deflection of rotational magnetic moments.
Related papers
- Unveiling Exotic Magnetic Phases in Fibonacci Quasicrystalline Stacking
of Ferromagnetic Layers through Machine Learning [0.0]
We study a Fibonacci quasicrystalline stacking of ferromagnetic layers, potentially realizable using van der Waals magnetic materials.
We construct a model of this magnetic heterostructure, that displays a complex relationship between geometric frustration and magnetic order in this quasicrystalline system.
We employ a machine learning approach, which proves to be a powerful tool in revealing the complex magnetic behavior of this system.
arXiv Detail & Related papers (2023-07-29T19:03:12Z) - Imaging magnetism evolution of magnetite to megabar pressure range with
quantum sensors in diamond anvil cell [57.91882523720623]
We develop an in-situ magnetic detection technique at megabar pressures with high sensitivity and sub-microscale spatial resolution.
We observe the macroscopic magnetic transition of Fe3O4 in the megabar pressure range from strong ferromagnetism (alpha-Fe3O4) to weak ferromagnetism (beta-Fe3O4) and finally to non-magnetism (gamma-Fe3O4)
The presented method can potentially investigate the spin-orbital coupling and magnetism-superconductivity competition in magnetic systems.
arXiv Detail & Related papers (2023-06-13T15:19:22Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Colliding-probe bi-atomic magnetometers via energy circulation: Breaking
symmetry-enforced magneto-optical rotation blockade [0.0]
We show a propagation growth blockade in single probe based magnetic field sensing schemes.
We show, both experimentally and theoretically, a colliding probe bi-atomic magnetometer that lifts this NMORE blockade.
The new technique may have broad applications in photon gates and switching operations.
arXiv Detail & Related papers (2022-02-25T15:45:31Z) - Surpassing the Energy Resolution Limit with ferromagnetic torque sensors [55.41644538483948]
We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit.
We find that the Energy Resolution Limit (ERL), pointed out in recent literature, can be surpassed by many orders of magnitude.
arXiv Detail & Related papers (2021-04-29T15:44:12Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
A system of magnetic molecules coupled to microwave cavities undergoes the equilibrium superradiant phase transition.
The effect of the coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model.
A transmission experiment is shown to resolve the transition, measuring the quantum electrodynamical control of magnetism.
arXiv Detail & Related papers (2020-11-07T11:18:24Z) - Quantum Size Effects in the Magnetic Susceptibility of a Metallic
Nanoparticle [0.0]
We theoretically study quantum size effects in the magnetic response of a spherical metallic nanoparticles.
We compute the induced magnetic moment and the magnetic susceptibility for a nanoparticles in the presence of a static external magnetic field.
We propose two methods for experimental detection of the quantum size effects based on the coupling to superconducting quantum interference devices.
arXiv Detail & Related papers (2020-10-27T15:28:25Z) - Realization of a Bosonic Antiferromagnet [6.2669932229958345]
We create a one-dimensional Heisenberg antiferromagnet with ultracold bosons.
Compared with condensed matter systems, ultracold gases in optical lattices can be microscopically engineered and measured.
arXiv Detail & Related papers (2020-09-03T03:08:04Z) - Gravity Probe Spin: Prospects for measuring general-relativistic
precession of intrinsic spin using a ferromagnetic gyroscope [51.51258642763384]
An experimental test at the intersection of quantum physics and general relativity is proposed.
The behavior of intrinsic spin in spacetime is an experimentally open question.
A measurement is possible by using mm-scale ferromagnetic gyroscopes in orbit around the Earth.
arXiv Detail & Related papers (2020-06-16T17:18:44Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.