論文の概要: Tree Neural Networks in HOL4
- arxiv url: http://arxiv.org/abs/2009.01827v1
- Date: Thu, 3 Sep 2020 17:48:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-22 07:16:25.242251
- Title: Tree Neural Networks in HOL4
- Title(参考訳): HOL4におけるツリーニューラルネットワーク
- Authors: Thibault Gauthier
- Abstract要約: 本稿では,実証アシスタントHOL4におけるツリーニューラルネットワークの実装について述べる。
それらのアーキテクチャは、ドメインが公式の集合である関数の近似に自然に適している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an implementation of tree neural networks within the proof
assistant HOL4. Their architecture makes them naturally suited for
approximating functions whose domain is a set of formulas. We measure the
performance of our implementation and compare it with other machine learning
predictors on the tasks of evaluating arithmetical expressions and estimating
the truth of propositional formulas.
- Abstract(参考訳): 本稿では,実証アシスタントHOL4におけるツリーニューラルネットワークの実装について述べる。
彼らのアーキテクチャは、ドメインが式の集合である関数の近似に自然に適合する。
計算式の評価や命題公式の真偽推定のタスクにおいて,実装の性能を測定し,他の機械学習予測子と比較する。
関連論文リスト
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - A Recursively Recurrent Neural Network (R2N2) Architecture for Learning
Iterative Algorithms [64.3064050603721]
本研究では,リカレントニューラルネットワーク (R2N2) にランゲ・クッタニューラルネットワークを一般化し,リカレントニューラルネットワークを最適化した反復アルゴリズムの設計を行う。
本稿では, 線形方程式系に対するクリロフ解法, 非線形方程式系に対するニュートン・クリロフ解法, 常微分方程式に対するルンゲ・クッタ解法と類似の繰り返しを計算問題クラスの入力・出力データに対して提案した超構造内における重みパラメータの正規化について述べる。
論文 参考訳(メタデータ) (2022-11-22T16:30:33Z) - Neural Eigenfunctions Are Structured Representation Learners [93.53445940137618]
本稿ではニューラル固有写像という,構造化された適応長の深部表現を提案する。
本稿では,データ拡張設定における正の関係から固有関数が導出される場合,NeuralEFを適用することで目的関数が得られることを示す。
画像検索システムにおいて,適応長符号のような表現を用いることを実証する。
論文 参考訳(メタデータ) (2022-10-23T07:17:55Z) - Sparsely ensembled convolutional neural network classifiers via
reinforcement learning [0.0]
畳み込みニューラルネットワーク(CNN)は,最小動作原理にインスパイアされた目的関数で学習する。
我々はエージェントに事前学習した分類器の集合を通してイメージを知覚するように教え、その結果、動的に構成されたシステムに計算グラフを展開させたい。
実験の結果,エージェントが計算の動的(および文脈に依存した)構造を利用すると,従来のアンサンブル学習よりも優れることがわかった。
論文 参考訳(メタデータ) (2021-02-07T21:26:57Z) - GENNI: Visualising the Geometry of Equivalences for Neural Network
Identifiability [14.31120627384789]
ニューラルネットワークの対称性を可視化する効率的なアルゴリズムを提案する。
提案手法であるGENNIは,機能的に等価なパラメータを効率的に同定し,その結果の同値クラスの部分空間を可視化する。
論文 参考訳(メタデータ) (2020-11-14T22:53:13Z) - Evaluating Tree Explanation Methods for Anomaly Reasoning: A Case Study
of SHAP TreeExplainer and TreeInterpreter [6.718611456024702]
木に基づくモデルを記述するための2つの手法-木インタープリタ(TI)とシャプレー付加例木説明器(SHAP-TE)-の性能について検討する。
SHAP-TEはTI上での整合性を保証するが,計算量の増加を犠牲にすることで,このケーススタディでは必ずしも整合性は向上しないことがわかった。
論文 参考訳(メタデータ) (2020-10-13T23:18:26Z) - Solving Arithmetic Word Problems by Scoring Equations with Recursive
Neural Networks [25.08023032443234]
最近の研究は、算術語問題に対する答えを提供する候補解方程式の自動抽出とランキングを用いている。
そこで本研究では,Tree-RNN 構成を用いて,そのような候補解方程式を評価する新しい手法について検討する。
提案手法は,方程式の数学的表現を表現木に変換することで構成する。
論文 参考訳(メタデータ) (2020-09-11T19:48:42Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
我々は、ニューラルネットワークの有意義な表現を見つけるためにオートエンコーダを用いる。
アーキテクチャの性能を予測するために、グラフ畳み込みニューラルネットワークを導入する。
論文 参考訳(メタデータ) (2020-05-14T09:02:33Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z) - Adaptive Explainable Neural Networks (AxNNs) [8.949704905866888]
我々は、予測性能とモデル解釈可能性の両目標を達成するために、Adaptive Explainable Neural Networks (AxNN) と呼ばれる新しいフレームワークを開発した。
予測性能向上のために,一般化された付加的モデルネットワークと付加的インデックスモデルからなる構造化ニューラルネットワークを構築した。
本稿では,AxNNの結果を主効果と高次相互作用効果に分解する方法を示す。
論文 参考訳(メタデータ) (2020-04-05T23:40:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。