論文の概要: Developing Enterprise Cyber Situational Awareness
- arxiv url: http://arxiv.org/abs/2009.01864v1
- Date: Thu, 3 Sep 2020 18:16:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-03 22:43:43.976349
- Title: Developing Enterprise Cyber Situational Awareness
- Title(参考訳): 企業サイバー状況認識の展開
- Authors: Christopher L Gorham
- Abstract要約: このトピックは、米国国防総省のネットワークセキュリティ防衛の改善戦略に焦点を当てる。
このアプローチは、DODの目標がネットワークを保護するための脆弱性に対処するかどうかを判断するために分析される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The topic will focus on the U.S. Department of Defense strategy towards
improving their network security defenses for the department and the steps they
have taken at the agency level where components under DOD such as The Defense
Information Systems Agency are working towards adding tools that provides
additional capabilities in the cyber space. This approach will be analyzed to
determine if DOD goals address any of their vulnerabilities towards protecting
their networks. One of the agencies under the DOD umbrella called The Defense
Information Systems Agency provides DOD a template on how to build a network
that relies upon layers of security to help it combat cyber attacks against its
network. Whether that provides an effective solution to DOD remains a question
due to the many components that operate under its direction. Managing these
networks is the principle responsibilities for the Department of Defense.
Nevertheless, it does demonstrates that there are tools available to help DOD
build an strong enterprise cyber network of situational awareness that
strengthens the ability to protect their network infrastructure.
- Abstract(参考訳): このトピックは、国防総省が国防総省のネットワークセキュリティ防御を改善するための戦略と、国防情報システム庁などのdod下にあるコンポーネントがサイバー空間に追加機能を提供するツールを追加するために取り組んでいる機関レベルで行ったステップに焦点を当てる。
このアプローチは、DODの目標がネットワークを保護するための脆弱性に対処するかどうかを判断するために分析される。
DOD傘下のDefense Information Systems Agency(国防情報システム庁)は、そのネットワークに対するサイバー攻撃に対抗するために、セキュリティ層に依存するネットワークを構築するためのテンプレートを提供している。
DODに効果的なソリューションを提供するかどうかは、その方向性の下で動作している多くのコンポーネントのため、依然として疑問である。
これらのネットワークの管理は国防総省の原則的責任である。
それでも、dodがネットワークインフラストラクチャを保護する能力を強化する、状況対応型の強力なエンタープライズサイバーネットワークを構築するのに役立つツールがあることを実証している。
関連論文リスト
- Multi-Objective Reinforcement Learning for Automated Resilient Cyber Defence [0.0]
サイバー攻撃は、軍事指揮統制ネットワーク、情報、監視、偵察(ISR)システム、民間の臨界国家インフラにセキュリティ上の脅威をもたらす。
これらの攻撃における人工知能と自律エージェントの使用は、この脅威の規模、範囲、複雑さを増大させ、それらが引き起こす破壊を後押しする。
自律サイバー防衛(ACD)エージェントは、マシンスピードとこの問題に対処するために必要なスケールで応答することで、この脅威を軽減することを目指している。
論文 参考訳(メタデータ) (2024-11-26T16:51:52Z) - Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [70.93622520400385]
本稿では,VLAに基づくロボットシステムのロバスト性を体系的に評価する。
本研究では,ロボット行動の不安定化に空間的基盤を活用する,標的のない位置認識型攻撃目標を提案する。
また、カメラの視野内に小さなカラフルなパッチを配置し、デジタル環境と物理環境の両方で効果的に攻撃を実行する逆パッチ生成アプローチを設計する。
論文 参考訳(メタデータ) (2024-11-18T01:52:20Z) - Countering Autonomous Cyber Threats [40.00865970939829]
ファンデーションモデルは、サイバードメイン内で広く、特に二元的関心事を提示します。
近年の研究では、これらの先進的なモデルが攻撃的なサイバースペース操作を通知または独立に実行する可能性を示している。
この研究は、孤立したネットワークでマシンを妥協する能力について、最先端のいくつかのFMを評価し、そのようなAIによる攻撃を倒す防御メカニズムを調査する。
論文 参考訳(メタデータ) (2024-10-23T22:46:44Z) - A Survey on the Application of Generative Adversarial Networks in Cybersecurity: Prospective, Direction and Open Research Scopes [1.3631461603291568]
GAN(Generative Adversarial Networks)は、常に変化するセキュリティ問題に対処する強力なソリューションとして登場した。
本研究は, サイバーセキュリティの防衛強化において, GANを的確に捉えた深層学習モデルの重要性について検討した。
焦点は、これらのドメインにおけるサイバーセキュリティの防御を強化するために、GANがいかに影響力のあるツールになり得るかを調べることである。
論文 参考訳(メタデータ) (2024-07-11T19:51:48Z) - Navigating the road to automotive cybersecurity compliance [39.79758414095764]
自動車業界は、車両とデータの両方を潜在的な脅威から保護するために、堅牢なサイバーセキュリティ対策を採用することを余儀なくされている。
自動車のサイバーセキュリティの未来は、先進的な保護措置と、すべての利害関係者の協力的努力の継続的な発展にある。
論文 参考訳(メタデータ) (2024-06-29T16:07:48Z) - Attention-Based Real-Time Defenses for Physical Adversarial Attacks in
Vision Applications [58.06882713631082]
ディープニューラルネットワークはコンピュータビジョンタスクにおいて優れたパフォーマンスを示すが、現実の敵攻撃に対する脆弱性は深刻なセキュリティ上の懸念を引き起こす。
本稿では、敵チャネルの注意力を利用して、浅いネットワーク層における悪意のある物体を素早く識別・追跡する、効果的な注意に基づく防御機構を提案する。
また、効率的な多フレーム防御フレームワークを導入し、防御性能と計算コストの両方を評価することを目的とした広範な実験を通じて、その有効性を検証した。
論文 参考訳(メタデータ) (2023-11-19T00:47:17Z) - Automated Cyber Defence: A Review [0.0]
Automated Cyber Defense内の研究は、シーケンシャルな意思決定エージェントを通じて、ネットワークされたシステムを自律的に防御することで、インテリジェンス対応の開発と実現を可能にする。
本稿では,ACO(Autonomous Cyber Operation)とACO(Autonomous Cyber Operation)の2つのサブ領域に分割して,自動サイバー防衛の展開を包括的に詳述する。
この要件分析は、ACO Gymsを、現実のネットワークシステムに自動エージェントをデプロイするための総合的な目標として批判するためにも用いられる。
論文 参考訳(メタデータ) (2023-03-08T22:37:50Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
ワークショップは、サイバーセキュリティの問題へのAIの適用に焦点を当てる。
サイバーシステムは大量のデータを生成し、これを効果的に活用することは人間の能力を超えます。
論文 参考訳(メタデータ) (2022-02-28T18:27:41Z) - An Overview of Backdoor Attacks Against Deep Neural Networks and
Possible Defences [33.415612094924654]
本研究の目的は,これまでに提案された攻撃・防衛の多種多様さを概観することである。
バックドア攻撃では、攻撃者はトレーニングデータを破損し、テスト時に誤動作を誘発する。
テストタイムエラーは、適切に作成された入力サンプルに対応するトリガーイベントの存在下でのみ起動される。
論文 参考訳(メタデータ) (2021-11-16T13:06:31Z) - SOM-based DDoS Defense Mechanism using SDN for the Internet of Things [14.58995970729543]
ソフトウェア定義ネットワーク(SDN)を用いたSOMベースのDDoS防御機構を提案する。
このメカニズムの主な考え方は、物のインターネットにおけるデバイスサービスを保護するためにSDNベースのゲートウェイをデプロイすることだ。
論文 参考訳(メタデータ) (2020-03-15T14:13:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。