論文の概要: The Little W-Net That Could: State-of-the-Art Retinal Vessel
Segmentation with Minimalistic Models
- arxiv url: http://arxiv.org/abs/2009.01907v1
- Date: Thu, 3 Sep 2020 19:59:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-22 08:01:52.002392
- Title: The Little W-Net That Could: State-of-the-Art Retinal Vessel
Segmentation with Minimalistic Models
- Title(参考訳): 最先端の網膜血管セグメンテーションを極小モデルで実現する小さなw-net
- Authors: Adrian Galdran, Andr\'e Anjos, Jos\'e Dolz, Hadi Chakor, Herv\'e
Lombaert, Ismail Ben Ayed
- Abstract要約: 数桁のパラメータが桁違いに少ない標準U-Netのミニマリストバージョンが、現在のベストプラクティスの性能を近似していることを示す。
また,W-Netと呼ばれる単純な拡張も提案する。
また、Artery/Veinセグメンテーション問題にもアプローチを試行し、その結果を最先端技術に整合させる。
- 参考スコア(独自算出の注目度): 19.089445797922316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The segmentation of the retinal vasculature from eye fundus images represents
one of the most fundamental tasks in retinal image analysis. Over recent years,
increasingly complex approaches based on sophisticated Convolutional Neural
Network architectures have been slowly pushing performance on well-established
benchmark datasets. In this paper, we take a step back and analyze the real
need of such complexity. Specifically, we demonstrate that a minimalistic
version of a standard U-Net with several orders of magnitude less parameters,
carefully trained and rigorously evaluated, closely approximates the
performance of current best techniques. In addition, we propose a simple
extension, dubbed W-Net, which reaches outstanding performance on several
popular datasets, still using orders of magnitude less learnable weights than
any previously published approach. Furthermore, we provide the most
comprehensive cross-dataset performance analysis to date, involving up to 10
different databases. Our analysis demonstrates that the retinal vessel
segmentation problem is far from solved when considering test images that
differ substantially from the training data, and that this task represents an
ideal scenario for the exploration of domain adaptation techniques. In this
context, we experiment with a simple self-labeling strategy that allows us to
moderately enhance cross-dataset performance, indicating that there is still
much room for improvement in this area. Finally, we also test our approach on
the Artery/Vein segmentation problem, where we again achieve results
well-aligned with the state-of-the-art, at a fraction of the model complexity
in recent literature. All the code to reproduce the results in this paper is
released.
- Abstract(参考訳): 眼底画像からの網膜血管の分画は網膜画像解析における最も基本的な課題の1つである。
近年,洗練された畳み込みニューラルネットワークアーキテクチャに基づく複雑なアプローチが,確立されたベンチマークデータセットのパフォーマンスを徐々に押し上げている。
本稿では,そのような複雑さの真のニーズを一歩引いて分析する。
具体的には、数桁のパラメータが桁違いに少ない標準U-Netのミニマリストバージョンが、注意深く訓練され、厳密に評価され、現在のベストプラクティスの性能を近似していることを示す。
さらに、w-netと呼ばれる単純な拡張を提案する。これはいくつかの人気のあるデータセットで優れたパフォーマンスを達成し、これまで公表されたどのアプローチよりも学習可能な重みを桁違いに減らすことができる。
さらに、最大10の異なるデータベースを含む、これまでで最も包括的なクロスデータセットのパフォーマンス分析を提供する。
本研究は, 網膜血管のセグメンテーション問題は, トレーニングデータと大きく異なるテスト画像を考えると, 解決には程遠い問題であり, 本課題がドメイン適応手法の探索の理想的なシナリオであることを示すものである。
この文脈で、私たちは、データ間のパフォーマンスを適度に向上できるシンプルな自己ラベル戦略を実験し、この分野には改善の余地がまだたくさんあることを示す。
最後に, 動脈・静脈分画問題に対するアプローチをテストし, 最近の文献では, モデルの複雑さのごく一部で, 最先端とよく一致した結果が得られている。
本論文の結果を再現するコードはすべてリリースされている。
関連論文リスト
- Few-shot Online Anomaly Detection and Segmentation [29.693357653538474]
本稿では,難易度の高いオンライン異常検出・セグメンテーション(FOADS)の課題に対処することに焦点を当てる。
FOADSフレームワークでは、モデルを数ショットの通常のデータセットでトレーニングし、その後、正常サンプルと異常サンプルの両方を含む未ラベルのストリーミングデータを活用することで、その能力の検査と改善を行う。
限られたトレーニングサンプルを用いた性能向上のために,ImageNetで事前学習したCNNから抽出したマルチスケール特徴埋め込みを用いて,ロバストな表現を得る。
論文 参考訳(メタデータ) (2024-03-27T02:24:00Z) - Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis [50.972595036856035]
本稿では,6つの人気グラフと最近のグラフ推薦モデルの結果を再現するコードを提案する。
これらのグラフモデルと従来の協調フィルタリングモデルを比較する。
ユーザの近所からの情報フローを調べることにより,データセット構造における内在的特徴にどのようなモデルが影響するかを同定することを目的とする。
論文 参考訳(メタデータ) (2023-08-01T09:31:44Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
アクションラベルはソースデータセットでのみ利用可能だが、トレーニング段階のターゲットデータセットでは利用できない。
我々は,2つの骨格に基づく行動データセット間の領域シフトを低減するために,自己スーパービジョン方式を利用する。
時間的セグメントや人体部分のセグメンテーションとパーフォーミングにより、我々は2つの自己教師あり学習分類タスクを設計する。
論文 参考訳(メタデータ) (2022-07-17T07:05:39Z) - Last Layer Re-Training is Sufficient for Robustness to Spurious
Correlations [51.552870594221865]
最後の層再トレーニングは,突発的な相関ベンチマークにおいて,最先端の手法と一致するか,あるいは性能的に優れていることを示す。
また,大規模な画像ネット学習モデルにおける最終層の再トレーニングにより,背景情報やテクスチャ情報への依存を著しく低減できることを示す。
論文 参考訳(メタデータ) (2022-04-06T16:55:41Z) - End-to-end Neuron Instance Segmentation based on Weakly Supervised
Efficient UNet and Morphological Post-processing [0.0]
組織像からNeuN染色神経細胞を自動的に検出し,分画するエンド・ツー・エンド・エンド・エンド型のフレームワークを提案する。
私たちは最先端のネットワークであるEfficientNetをU-Netのようなアーキテクチャに統合します。
論文 参考訳(メタデータ) (2022-02-17T14:35:45Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z) - The Devil is in Classification: A Simple Framework for Long-tail Object
Detection and Instance Segmentation [93.17367076148348]
本稿では,最新のロングテールLVISデータセットを用いて,最先端の2段階のインスタンスセグメンテーションモデルMask R-CNNの性能低下について検討する。
主な原因は、オブジェクト提案の不正確な分類である。
そこで本研究では,2段階のクラスバランスサンプリング手法により,分類ヘッドバイアスをより効果的に緩和する,簡単な校正フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-23T12:49:07Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
現代の深層畳み込みネットワーク(CNN)は、分散シフトの下で一般化しないとしてしばしば批判される。
現代画像分類CNNにおける分布外と転送性能の相互作用を初めて検討した。
トレーニングセットとモデルサイズを増大させることで、分散シフトロバスト性が著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-16T18:39:04Z) - Segmentation of Macular Edema Datasets with Small Residual 3D U-Net
Architectures [5.881334886616738]
本稿では, 深部畳み込み型ニューラルネットワークの黄斑浮腫セグメンテーション問題への応用について検討する。
一般的な信念とは対照的に、このアプリケーション設定内のニューラルアーキテクチャは、大量のトレーニングサンプルを必要とせずに、目に見えないテストイメージ上での人間レベルのパフォーマンスに近いパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2020-05-10T15:34:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。