Spectroscopy and critical quantum thermometry in the ultrastrong
coupling regime
- URL: http://arxiv.org/abs/2009.01994v2
- Date: Mon, 18 Jan 2021 22:54:57 GMT
- Title: Spectroscopy and critical quantum thermometry in the ultrastrong
coupling regime
- Authors: M. Salado-Mej\'ia, R. Rom\'an-Ancheyta, F. Soto-Eguibar and H. M.
Moya-Cessa
- Abstract summary: We show that depending on the initial state of the coupled system, the vacuum Rabi splitting manifests significant asymmetries.
We obtain the ultimate bounds on the estimation of temperature that remain valid in the ultrastrong coupling regime.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an exact analytical solution of the anisotropic Hopfield model,
and we use it to investigate in detail the spectral and thermometric response
of two ultrastrongly coupled quantum systems. Interestingly, we show that
depending on the initial state of the coupled system, the vacuum Rabi splitting
manifests significant asymmetries that may be considered spectral signatures of
the counterintuitive decoupling effect. Using the coupled system as a
thermometer for quantum thermodynamics applications, we obtain the ultimate
bounds on the estimation of temperature that remain valid in the ultrastrong
coupling regime. Remarkably, if the system performs a quantum phase transition,
the quantum Fisher information exhibits periodic divergences, suggesting that
one can have several points of arbitrarily high thermometric precision for such
a critical quantum sensor.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Coherence-enhanced single-qubit thermometry out of equilibrium [0.0]
We consider a finite-dimensional quantum system, employed as a quantum thermometer, in contact with a thermal inducing Markov bathian thermalization dynamics.
We prove that the sensitivity of the thermometer, quantified by the quantum Fisher information, is enhanced by the quantum coherence in its initial state.
arXiv Detail & Related papers (2024-05-23T11:11:01Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Criticality-Enhanced Precision in Phase Thermometry [4.508246364123997]
We study non-invasive quantum thermometry of a finite, two-dimensional Ising spin lattice based on measuring the non-Markovian dephasing dynamics of a spin probe coupled to the lattice.
We demonstrate a strong critical enhancement of the achievable precision in terms of the quantum Fisher information.
arXiv Detail & Related papers (2023-11-24T16:08:55Z) - Variational quantum simulation of the quantum critical regime [0.0]
We propose a variational approach, which minimizes the variational free energy, to simulate and locate the quantum critical regime on a quantum computer.
Our work suggests a practical way as well as a first step for investigating quantum critical systems at finite temperatures on quantum devices with few qubits.
arXiv Detail & Related papers (2023-02-15T02:59:41Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Critical quantum thermometry and its feasibility in spin systems [0.0]
We use the quantum Fisher information (QFI) approach to quantify the sensitivity in the temperature estimation.
We numerically calculate the QFI around the critical points for two experimentally-realizable systems.
arXiv Detail & Related papers (2022-04-06T11:21:39Z) - Adiabatic Sensing Technique for Optimal Temperature Estimation using
Trapped Ions [64.31011847952006]
We propose an adiabatic method for optimal phonon temperature estimation using trapped ions.
The relevant information of the phonon thermal distributions can be transferred to the collective spin-degree of freedom.
We show that each of the thermal state probabilities is adiabatically mapped onto the respective collective spin-excitation configuration.
arXiv Detail & Related papers (2020-12-16T12:58:08Z) - Thermodynamics of ultrastrongly coupled light-matter systems [0.0]
We study the thermodynamic properties of a system of two-level dipoles that are coupled ultrastrongly to a single cavity mode.
We identify the lowest-order cavity-induced corrections to those quantities in the collective ultrastrong coupling regime.
For even stronger interactions the presence of a single cavity mode can strongly modify extensive thermodynamic quantities.
arXiv Detail & Related papers (2020-03-25T18:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.