End-to-End Deep Learning Model for Cardiac Cycle Synchronization from
Multi-View Angiographic Sequences
- URL: http://arxiv.org/abs/2009.02345v1
- Date: Fri, 4 Sep 2020 18:11:50 GMT
- Title: End-to-End Deep Learning Model for Cardiac Cycle Synchronization from
Multi-View Angiographic Sequences
- Authors: Rapha\"el Royer-Rivard, Fantin Girard, Nagib Dahdah and Farida Cheriet
- Abstract summary: Temporal matching of the different views, which may not be acquired simultaneously, is a prerequisite for an accurate stereo-matching of the coronary segments.
We show how a neural network can be trained from angiographic sequences to synchronize different views during the cardiac cycle.
- Score: 3.4377441151536376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic reconstructions (3D+T) of coronary arteries could give important
perfusion details to clinicians. Temporal matching of the different views,
which may not be acquired simultaneously, is a prerequisite for an accurate
stereo-matching of the coronary segments. In this paper, we show how a neural
network can be trained from angiographic sequences to synchronize different
views during the cardiac cycle using raw x-ray angiography videos exclusively.
First, we train a neural network model with angiographic sequences to extract
features describing the progression of the cardiac cycle. Then, we compute the
distance between the feature vectors of every frame from the first view with
those from the second view to generate distance maps that display stripe
patterns. Using pathfinding, we extract the best temporally coherent
associations between each frame of both videos. Finally, we compare the
synchronized frames of an evaluation set with the ECG signals to show an
alignment with 96.04% accuracy.
Related papers
- Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
We present a novel approach for 3D/2D intraoperative registration during neurosurgery via cross-modal inverse neural rendering.
Our approach separates implicit neural representation into two components, handling anatomical structure preoperatively and appearance intraoperatively.
We tested our method on retrospective patients' data from clinical cases, showing that our method outperforms state-of-the-art while meeting current clinical standards for registration.
arXiv Detail & Related papers (2024-09-18T13:40:59Z) - Epicardium Prompt-guided Real-time Cardiac Ultrasound Frame-to-volume Registration [50.602074919305636]
This paper introduces a lightweight end-to-end Cardiac Ultrasound frame-to-volume Registration network, termed CU-Reg.
We use epicardium prompt-guided anatomical clues to reinforce the interaction of 2D sparse and 3D dense features, followed by a voxel-wise local-global aggregation of enhanced features.
arXiv Detail & Related papers (2024-06-20T17:47:30Z) - SimLVSeg: Simplifying Left Ventricular Segmentation in 2D+Time Echocardiograms with Self- and Weakly-Supervised Learning [0.8672882547905405]
We develop SimLVSeg, a video-based network for consistent left ventricular (LV) segmentation from sparsely annotated echocardiogram videos.
SimLVSeg consists of self-supervised pre-training with temporal masking, followed by weakly supervised learning tailored for LV segmentation from sparse annotations.
We demonstrate how SimLVSeg outperforms the state-of-the-art solutions by achieving a 93.32% dice score on the largest 2D+time echocardiography dataset.
arXiv Detail & Related papers (2023-09-30T18:13:41Z) - Echocardiography Segmentation Using Neural ODE-based Diffeomorphic
Registration Field [0.0]
We present a novel method for diffevolution image registration using neural ordinary differential equations (Neural ODE)
The proposed method, Echo-ODE, introduces several key improvements compared to the previous state-of-the-art.
The results show that our method surpasses the previous state-of-the-art in multiple aspects.
arXiv Detail & Related papers (2023-06-16T08:37:27Z) - Streaming Audio-Visual Speech Recognition with Alignment Regularization [69.30185151873707]
We propose a streaming AV-ASR system based on a hybrid connectionist temporal classification ( CTC)/attention neural network architecture.
The proposed AV-ASR model achieves WERs of 2.0% and 2.6% on the Lip Reading Sentences 3 dataset in an offline and online setup.
arXiv Detail & Related papers (2022-11-03T20:20:47Z) - Light-weight spatio-temporal graphs for segmentation and ejection
fraction prediction in cardiac ultrasound [5.597394612661975]
We propose an automated method called EchoGraphs for predicting ejection fraction and segmenting the left ventricle.
Models for direct coordinate regression based on Graph Conal Networks (GCNs) are used to detect the keypoints.
Compared to semantic segmentation, GCNs show accurate segmentation and improvements in robustness and inference runtime.
arXiv Detail & Related papers (2022-07-06T10:03:44Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Echocardiography Segmentation with Enforced Temporal Consistency [10.652677452009627]
We propose a framework to learn the 2D+time long-axis cardiac shape.
The identification and correction of cardiac inconsistencies relies on a constrained autoencoder trained to learn a physiologically interpretable embedding of cardiac shapes.
arXiv Detail & Related papers (2021-12-03T16:09:32Z) - Automatic Identification of the End-Diastolic and End-Systolic Cardiac
Frames from Invasive Coronary Angiography Videos [6.203906656404265]
The identification of proper image frames at the end-diastolic (ED) and end-systolic (ES) frames during the review of invasive coronary angiograms is important.
The current identification method primarily relies on visual interpretation, making it not only time-consuming but also less reproducible.
We propose a new method to automatically identify angiographic image frames associated with the ED and ES cardiac phases by using the trajectories of key vessel points.
arXiv Detail & Related papers (2021-10-06T15:16:55Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
We propose a novel framework to pursue discriminative and robust representation by modeling cross-scale spatial-temporal correlation.
CTL utilizes a CNN backbone and a key-points estimator to extract semantic local features from human body.
It explores a context-reinforced topology to construct multi-scale graphs by considering both global contextual information and physical connections of human body.
arXiv Detail & Related papers (2021-04-15T14:32:12Z) - XraySyn: Realistic View Synthesis From a Single Radiograph Through CT
Priors [118.27130593216096]
A radiograph visualizes the internal anatomy of a patient through the use of X-ray, which projects 3D information onto a 2D plane.
To the best of our knowledge, this is the first work on radiograph view synthesis.
We show that by gaining an understanding of radiography in 3D space, our method can be applied to radiograph bone extraction and suppression without groundtruth bone labels.
arXiv Detail & Related papers (2020-12-04T05:08:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.