論文の概要: Intelligent Luminaire based Real-time Indoor Positioning for Assisted
Living
- arxiv url: http://arxiv.org/abs/2009.02483v1
- Date: Sat, 5 Sep 2020 07:19:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-03 18:50:27.441391
- Title: Intelligent Luminaire based Real-time Indoor Positioning for Assisted
Living
- Title(参考訳): 知的照明器具を用いた生活支援のためのリアルタイム屋内測位
- Authors: Iuliana Marin and Maria Iuliana Bocicor and Arthur-Jozsef Molnar
- Abstract要約: 本稿では,屋内位置推定の精度を実験的に評価する。
この研究は、高齢者ケアのためのICTソリューションの作成を目的とした欧州連合プロジェクトの一環として実施された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents an experimental evaluation on the accuracy of indoor
localisation. The research was carried out as part of a European Union project
targeting the creation of ICT solutions for older adult care. Current
expectation is that advances in technology will supplement the human workforce
required for older adult care, improve their quality of life and decrease
healthcare expenditure. The proposed approach is implemented in the form of a
configurable cyber-physical system that enables indoor localization and
monitoring of older adults living at home or in residential buildings. Hardware
consists of custom developed luminaires with sensing, communication and
processing capabilities. They replace the existing lighting infrastructure, do
not look out of place and are cost effective. The luminaires record the
strength of a Bluetooth signal emitted by a wearable device equipped by the
monitored user. The system's software server uses trilateration to calculate
the person's location based on known luminaire placement and recorded signal
strengths. However, multipath fading caused by the presence of walls, furniture
and other objects introduces localisation errors. Our previous experiments
showed that room-level accuracy can be achieved using software-based filtering
for a stationary subject. Our current objective is to assess system accuracy in
the context of a moving subject, and ascertain whether room-level localization
is feasible in real time.
- Abstract(参考訳): 本稿では,屋内位置推定の精度を実験的に評価する。
この研究は、高齢者ケアのためのICTソリューションの作成を目的とした欧州連合プロジェクトの一環として実施された。
テクノロジーの進歩は、高齢者医療に必要な人的労働力の補充、生活の質の向上、医療費の削減を期待している。
提案手法は,屋内における高齢者の居住状況の把握と監視を可能にする,構成可能なサイバーフィジカルシステムとして実装されている。
ハードウェアは、センシング、通信、処理能力を備えた独自の照明器具で構成されている。
既存の照明設備を置き換えるもので、場所を見捨てず、コスト効率がよい。
照明器具は、監視されたユーザによって装備されたウェアラブルデバイスから放出されるbluetooth信号の強度を記録する。
システムのソフトウェアサーバは、既知のルミネア配置と記録された信号強度に基づいて、トリラレーションを使用して人物の位置を算出する。
しかし,壁や家具などの物体の存在によるマルチパスの消失は,局所化エラーを引き起こす。
従来の実験では,静止物体に対するソフトウェアベースのフィルタリングを用いて部屋レベルの精度を実現することができた。
我々の現在の目的は、移動対象の文脈におけるシステムの精度を評価し、部屋レベルのローカライゼーションがリアルタイムに可能かどうかを確認することである。
関連論文リスト
- Small Object Detection for Indoor Assistance to the Blind using YOLO NAS Small and Super Gradients [0.0]
本稿では,小物体検出の課題に対処して,視覚障害者に対する屋内支援のための新しいアプローチを提案する。
軽量で効率的なオブジェクト検出モデルであるYOLO NAS Smallアーキテクチャを,Super Gradientsトレーニングフレームワークを用いて最適化する手法を提案する。
論文 参考訳(メタデータ) (2024-08-28T05:38:20Z) - TimeSense: Multi-Person Device-free Indoor Localization via RTT [1.7667202894248826]
TimeSense(タイムセンス)はIEEE 802.11-2016標準に基づくデバイスフリーの屋内ローカライズシステムである。
TimeSenseは1.57mと2.65mの中央値のローカライゼーション精度を達成している。
これは2つのテストベッドで、最先端のテクニックのパフォーマンスを49%、そして103%上回る。
論文 参考訳(メタデータ) (2024-08-17T13:12:33Z) - Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information [68.10033984296247]
本稿では, 位置決めの精度を高めるために, 視点選択の重要性を強調し, アクティブな位置決め領域について検討する。
私たちのコントリビューションは、リアルタイム操作用に設計されたシンプルなアーキテクチャ、自己教師付きデータトレーニング方法、および実世界のロボティクスアプリケーションに適した計画フレームワークにマップを一貫して統合する能力による、データ駆動型アプローチの使用に関するものです。
論文 参考訳(メタデータ) (2024-07-22T12:32:09Z) - Robust Collaborative Perception without External Localization and Clock Devices [52.32342059286222]
複数のエージェントをまたいだ一貫した空間的時間的調整は、協調的な知覚の基礎である。
従来の手法は、ローカライゼーションとクロック信号を提供するために外部デバイスに依存している。
本稿では,様々なエージェントの知覚データに内在する幾何学的パターンを認識して整列する手法を提案する。
論文 参考訳(メタデータ) (2024-05-05T15:20:36Z) - Floor extraction and door detection for visually impaired guidance [78.94595951597344]
未知の環境で障害物のない経路を見つけることは、視覚障害者や自律ロボットにとって大きなナビゲーション問題である。
コンピュータビジョンシステムに基づく新しいデバイスは、障害のある人が安全な環境で未知の環境でナビゲートすることの難しさを克服するのに役立つ。
本研究では,視覚障害者のためのナビゲーションシステムの構築につながるセンサとアルゴリズムの組み合わせを提案する。
論文 参考訳(メタデータ) (2024-01-30T14:38:43Z) - A Simplistic and Cost-Effective Design for Real-World Development of an
Ambient Assisted Living System for Fall Detection and Indoor Localization:
Proof of Concept [0.0]
本研究は,Ambient Assisted Living Systemのための費用対効果と簡易設計パラダイムを提案する。
転倒検出や屋内位置決めを行うのに必要なADL中のユーザ動作のマルチモーダルなコンポーネントをキャプチャできる。
実世界の実験から得られた概念の証明は, システムの効果的な動作を裏付けるものである。
論文 参考訳(メタデータ) (2022-07-24T00:13:32Z) - Benchmarking high-fidelity pedestrian tracking systems for research,
real-time monitoring and crowd control [55.41644538483948]
実生活環境における高忠実な歩行者追跡は,群集動態研究において重要なツールである。
この技術が進歩するにつれて、社会においても益々有用になってきている。
歩行者追跡技術の研究と技術に成功させるためには、正確さの検証とベンチマークが不可欠である。
我々は、プライバシーに配慮した歩行者追跡技術のためのベンチマークスイートをコミュニティのオープンスタンダードに向けて提示し、議論する。
論文 参考訳(メタデータ) (2021-08-26T11:45:26Z) - Infrared Beacons for Robust Localization [58.720142291102135]
本稿では、赤外ビーコンと光帯域通過フィルタを備えたカメラを用いたローカライズシステムを提案する。
本システムは,照明条件にかかわらず,100m距離の個々のビーコンを確実に検出し識別することができる。
論文 参考訳(メタデータ) (2021-04-19T14:23:20Z) - Demo Abstract: Indoor Positioning System in Visually-Degraded
Environments with Millimetre-Wave Radar and Inertial Sensors [44.58134907168034]
本研究では,ミリ波レーダと慣性計測ユニット(IMU)データを深部センサ融合により融合する屋内位置決めシステムを提案する。
優れた精度とレジリエンスは、照明の悪いシーンでも見られた。
論文 参考訳(メタデータ) (2020-10-26T17:41:25Z) - Indoor Localization Techniques Within a Home Monitoring Platform [0.0]
本稿では,高齢者のリアルタイムモニタリングのために開発された屋内位置決め技術について詳述する。
これらは欧州連合が出資したi-Light研究プロジェクトの枠組みの中で開発された。
論文 参考訳(メタデータ) (2020-09-03T13:40:13Z) - Object-based Illumination Estimation with Rendering-aware Neural
Networks [56.01734918693844]
個々の物体とその局所画像領域のRGBD外観から高速環境光推定手法を提案する。
推定照明により、仮想オブジェクトは実際のシーンと一貫性のあるシェーディングでARシナリオでレンダリングできる。
論文 参考訳(メタデータ) (2020-08-06T08:23:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。