Semi-supervised Pathology Segmentation with Disentangled Representations
- URL: http://arxiv.org/abs/2009.02564v1
- Date: Sat, 5 Sep 2020 17:07:59 GMT
- Title: Semi-supervised Pathology Segmentation with Disentangled Representations
- Authors: Haochuan Jiang, Agisilaos Chartsias, Xinheng Zhang, Giorgos
Papanastasiou, Scott Semple, Mark Dweck, David Semple, Rohan Dharmakumar,
Sotirios A. Tsaftaris
- Abstract summary: We propose Anatomy-Pathology Disentanglement Network (APD-Net), a pathology segmentation model that attempts to learn jointly for the first time.
APD-Net can perform pathology segmentation with few annotations, maintain performance with different amounts of supervision, and outperform related deep learning methods.
- Score: 10.834978793226444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated pathology segmentation remains a valuable diagnostic tool in
clinical practice. However, collecting training data is challenging.
Semi-supervised approaches by combining labelled and unlabelled data can offer
a solution to data scarcity. An approach to semi-supervised learning relies on
reconstruction objectives (as self-supervision objectives) that learns in a
joint fashion suitable representations for the task. Here, we propose
Anatomy-Pathology Disentanglement Network (APD-Net), a pathology segmentation
model that attempts to learn jointly for the first time: disentanglement of
anatomy, modality, and pathology. The model is trained in a semi-supervised
fashion with new reconstruction losses directly aiming to improve pathology
segmentation with limited annotations. In addition, a joint optimization
strategy is proposed to fully take advantage of the available annotations. We
evaluate our methods with two private cardiac infarction segmentation datasets
with LGE-MRI scans. APD-Net can perform pathology segmentation with few
annotations, maintain performance with different amounts of supervision, and
outperform related deep learning methods.
Related papers
- Adversarial Vessel-Unveiling Semi-Supervised Segmentation for Retinopathy of Prematurity Diagnosis [9.683492465191241]
We propose a semi supervised segmentation framework designed to advance ROP studies without the need for extensive manual vessel annotation.
Unlike previous methods that rely solely on limited labeled data, our approach integrates uncertainty weighted vessel unveiling module and domain adversarial learning.
We validate our approach on public datasets and an in-house ROP dataset, demonstrating its superior performance across multiple evaluation metrics.
arXiv Detail & Related papers (2024-11-14T02:40:34Z) - Anatomy-guided Pathology Segmentation [56.883822515800205]
We develop a generalist segmentation model that combines anatomical and pathological information, aiming to enhance the segmentation accuracy of pathological features.
Our Anatomy-Pathology Exchange (APEx) training utilizes a query-based segmentation transformer which decodes a joint feature space into query-representations for human anatomy.
In doing so, we are able to report the best results across the board on FDG-PET-CT and Chest X-Ray pathology segmentation tasks with a margin of up to 3.3% as compared to strong baseline methods.
arXiv Detail & Related papers (2024-07-08T11:44:15Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Contour Transformer Network for One-shot Segmentation of Anatomical
Structures [26.599337546171732]
We present Contour Transformer Network (CTN), a one-shot anatomy segmentation method with a naturally built-in human-in-the-loop mechanism.
On segmentation tasks of four different anatomies, we demonstrate that our one-shot learning method significantly outperforms non-learning-based methods.
With minimal human-in-the-loop editing feedback, the segmentation performance can be further improved to surpass the fully supervised methods.
arXiv Detail & Related papers (2020-12-02T19:42:18Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - Towards Cross-modality Medical Image Segmentation with Online Mutual
Knowledge Distillation [71.89867233426597]
In this paper, we aim to exploit the prior knowledge learned from one modality to improve the segmentation performance on another modality.
We propose a novel Mutual Knowledge Distillation scheme to thoroughly exploit the modality-shared knowledge.
Experimental results on the public multi-class cardiac segmentation data, i.e., MMWHS 2017, show that our method achieves large improvements on CT segmentation.
arXiv Detail & Related papers (2020-10-04T10:25:13Z) - Learning to Segment Anatomical Structures Accurately from One Exemplar [34.287877547953194]
Methods that permit to produce accurate anatomical structure segmentation without using a large amount of fully annotated training images are highly desirable.
We propose Contour Transformer Network (CTN), a one-shot anatomy segmentor including a naturally built-in human-in-the-loop mechanism.
We demonstrate that our one-shot learning method significantly outperforms non-learning-based methods and performs competitively to the state-of-the-art fully supervised deep learning approaches.
arXiv Detail & Related papers (2020-07-06T20:27:38Z) - Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to
Unseen Domains [68.73614619875814]
We present a novel shape-aware meta-learning scheme to improve the model generalization in prostate MRI segmentation.
Experimental results show that our approach outperforms many state-of-the-art generalization methods consistently across all six settings of unseen domains.
arXiv Detail & Related papers (2020-07-04T07:56:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.