The 2ST-UNet for Pneumothorax Segmentation in Chest X-Rays using
ResNet34 as a Backbone for U-Net
- URL: http://arxiv.org/abs/2009.02805v1
- Date: Sun, 6 Sep 2020 19:39:05 GMT
- Title: The 2ST-UNet for Pneumothorax Segmentation in Chest X-Rays using
ResNet34 as a Backbone for U-Net
- Authors: Ayat Abedalla, Malak Abdullah, Mahmoud Al-Ayyoub, Elhadj Benkhelifa
- Abstract summary: We propose a 2-Stage Training system (2ST-UNet) to segment images with pneumothorax.
We start with training the network at a lower resolution before we load the trained model weights to retrain the network with a higher resolution.
Our experiments show that 2-Stage Training leads to better and faster network convergence.
- Score: 4.639643690208542
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pneumothorax, also called a collapsed lung, refers to the presence of the air
in the pleural space between the lung and chest wall. It can be small (no need
for treatment), or large and causes death if it is not identified and treated
on time. It is easily seen and identified by experts using a chest X-ray.
Although this method is mostly error-free, it is time-consuming and needs
expert radiologists. Recently, Computer Vision has been providing great
assistance in detecting and segmenting pneumothorax. In this paper, we propose
a 2-Stage Training system (2ST-UNet) to segment images with pneumothorax. This
system is built based on U-Net with Residual Networks (ResNet-34) backbone that
is pre-trained on the ImageNet dataset. We start with training the network at a
lower resolution before we load the trained model weights to retrain the
network with a higher resolution. Moreover, we utilize different techniques
including Stochastic Weight Averaging (SWA), data augmentation, and Test-Time
Augmentation (TTA). We use the chest X-ray dataset that is provided by the 2019
SIIM-ACR Pneumothorax Segmentation Challenge, which contains 12,047 training
images and 3,205 testing images. Our experiments show that 2-Stage Training
leads to better and faster network convergence. Our method achieves 0.8356 mean
Dice Similarity Coefficient (DSC) placing it among the top 9% of models with a
rank of 124 out of 1,475.
Related papers
- Pneumonia Detection on chest X-ray images Using Ensemble of Deep
Convolutional Neural Networks [7.232767871756102]
This paper presents a computer-aided classification of pneumonia, coined as Ensemble Learning (EL), to simplify the diagnosis process on chest X-ray images.
Our proposal is based on Convolutional Neural Network (CNN) models, which are pre-trained CNN models that have been recently employed to enhance the performance of many medical tasks instead of training CNN models from scratch.
The proposed EL approach outperforms other existing state-of-the-art methods, and it obtains an accuracy of 93.91% and a F1-Score of 93.88% on the testing phase.
arXiv Detail & Related papers (2023-12-13T08:28:21Z) - Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
Tuberculosis (TB) is a major global health threat, causing millions of deaths annually.
Computer-aided tuberculosis diagnosis (CTD) using deep learning has shown promise, but progress is hindered by limited training data.
We establish a large-scale dataset, namely the Tuberculosis X-ray (TBX11K) dataset, which contains 11,200 chest X-ray (CXR) images with corresponding bounding box annotations for TB areas.
This dataset enables the training of sophisticated detectors for high-quality CTD.
arXiv Detail & Related papers (2023-07-06T08:27:48Z) - An Efficient and Robust Method for Chest X-Ray Rib Suppression that
Improves Pulmonary Abnormality Diagnosis [0.49998148477760956]
Suppression of thoracic bone shadows on chest X-rays (CXRs) has been indicated to improve the diagnosis of pulmonary disease.
Previous approaches can be categorized as unsupervised physical and supervised deep learning models.
We propose a generalizable yet efficient workflow of two stages: (1) training pairs generation with GT bone shadows eliminated in minimization by a physical model in spatially transformed gradient fields.
(2) fully supervised image denoising network training on stage-one datasets for fast rib removal on incoming CXRs.
arXiv Detail & Related papers (2023-02-19T23:47:02Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Deep LF-Net: Semantic Lung Segmentation from Indian Chest Radiographs
Including Severely Unhealthy Images [5.826056983051642]
A chest radiograph, commonly called chest x-ray (CxR), plays a vital role in the diagnosis of various lung diseases.
Precise lung segmentation is extremely challenging because of variance in the shape of the lung caused by health issues, age, and gender.
The proposed work investigates the use of an efficient deep convolutional neural network for accurate segmentation of lungs from CxR.
arXiv Detail & Related papers (2020-11-19T07:21:02Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Multi-Task Driven Explainable Diagnosis of COVID-19 using Chest X-ray
Images [61.24431480245932]
COVID-19 Multi-Task Network is an automated end-to-end network for COVID-19 screening.
We manually annotate the lung regions of 9000 frontal chest radiographs taken from ChestXray-14, CheXpert and a consolidated COVID-19 dataset.
This database will be released to the research community.
arXiv Detail & Related papers (2020-08-03T12:52:23Z) - Improving performance of CNN to predict likelihood of COVID-19 using
chest X-ray images with preprocessing algorithms [0.3180570080674292]
The study demonstrates the feasibility of developing a computer-aided diagnosis scheme of chest X-ray images.
A dataset of 8,474 chest X-ray images is used to train and test the CNN-based CAD scheme.
The testing results achieve 94.0% of overall accuracy in classifying three classes and 98.6% accuracy in detecting Covid-19 infected cases.
arXiv Detail & Related papers (2020-06-11T16:45:46Z) - Deep Learning for Automatic Pneumonia Detection [72.55423549641714]
Pneumonia is the leading cause of death among young children and one of the top mortality causes worldwide.
Computer-aided diagnosis systems showed the potential for improving diagnostic accuracy.
We develop the computational approach for pneumonia regions detection based on single-shot detectors, squeeze-and-excitation deep convolution neural networks, augmentations and multi-task learning.
arXiv Detail & Related papers (2020-05-28T10:54:34Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z) - Automated Methods for Detection and Classification Pneumonia based on
X-Ray Images Using Deep Learning [0.0]
We show that fine-tuned version of Resnet50, MobileNet_V2 and Inception_Resnet_V2 show highly satisfactory performance with rate of increase in training and validation accuracy (more than 96% of accuracy)
Unlike CNN, Xception, VGG16, VGG19, Inception_V3 and DenseNet201 display low performance (more than 84% accuracy)
arXiv Detail & Related papers (2020-03-31T16:48:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.