Unscrambling the omelette of causation and inference: The framework of
causal-inferential theories
- URL: http://arxiv.org/abs/2009.03297v3
- Date: Wed, 19 May 2021 19:23:47 GMT
- Title: Unscrambling the omelette of causation and inference: The framework of
causal-inferential theories
- Authors: David Schmid, John H. Selby, Robert W. Spekkens
- Abstract summary: We introduce the notion of a causal-inferential theory using a process-theoretic formalism.
Recasting the notions of operational and realist theories in this mold clarifies what a realist account of an experiment offers beyond an operational account.
We argue that if one can identify axioms for a realist causal-inferential theory such that the notions of causation and inference can differ from their conventional (classical) interpretations, then one has the means of defining an intrinsically quantum notion of realism.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using a process-theoretic formalism, we introduce the notion of a
causal-inferential theory: a triple consisting of a theory of causal
influences, a theory of inferences (of both the Boolean and Bayesian
varieties), and a specification of how these interact. Recasting the notions of
operational and realist theories in this mold clarifies what a realist account
of an experiment offers beyond an operational account. It also yields a novel
characterization of the assumptions and implications of standard no-go theorems
for realist representations of operational quantum theory, namely, those based
on Bell's notion of locality and those based on generalized noncontextuality.
Moreover, our process-theoretic characterization of generalised
noncontextuality is shown to be implied by an even more natural principle which
we term Leibnizianity. Most strikingly, our framework offers a way forward in a
research program that seeks to circumvent these no-go results. Specifically, we
argue that if one can identify axioms for a realist causal-inferential theory
such that the notions of causation and inference can differ from their
conventional (classical) interpretations, then one has the means of defining an
intrinsically quantum notion of realism, and thereby a realist representation
of operational quantum theory that salvages the spirit of locality and of
noncontextuality.
Related papers
- Theory-Independent Realism [0.0]
We use a framework of generalized probabilistic theories to expand the notion of realism for a theory-independent context.
We propose quantifiers for the realism of arbitrary physical properties given a particular state of a generic physical theory.
These theory-independent quantifiers are then employed in quantum mechanics and we investigate their relation with another well-established irrealism measure.
arXiv Detail & Related papers (2024-02-27T01:34:53Z) - Relaxation of first-class constraints and the quantization of gauge theories: from "matter without matter" to the reappearance of time in quantum gravity [72.27323884094953]
We make a conceptual overview of an approach to the initial-value problem in canonical gauge theories.
We stress how the first-class phase-space constraints may be relaxed if we interpret them as fixing the values of new degrees of freedom.
arXiv Detail & Related papers (2024-02-19T19:00:02Z) - A Measure-Theoretic Axiomatisation of Causality [55.6970314129444]
We argue in favour of taking Kolmogorov's measure-theoretic axiomatisation of probability as the starting point towards an axiomatisation of causality.
Our proposed framework is rigorously grounded in measure theory, but it also sheds light on long-standing limitations of existing frameworks.
arXiv Detail & Related papers (2023-05-19T13:15:48Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - The operational framework for quantum theories is both epistemologically
and ontologically neutral [0.0]
It is argued that there is no argument that could favour realist or antirealist attitudes towards quantum mechanics based solely on some features of some formalism.
Both realist and antirealist views are well accomodable within operational formulations of the theory.
This discussion aims at clarifying the limits of the historical and methodological affinities between scientific antirealism and operational physics.
arXiv Detail & Related papers (2021-09-06T09:22:43Z) - Observers of quantum systems cannot agree to disagree [55.41644538483948]
We ask whether agreement between observers can serve as a physical principle that must hold for any theory of the world.
We construct examples of (postquantum) no-signaling boxes where observers can agree to disagree.
arXiv Detail & Related papers (2021-02-17T19:00:04Z) - Measuring Quantum Superpositions (Or, "It is only the theory which
decides what can be observed.") [0.0]
We argue that the ad hoc introduction of the projection postulate (or measurement rule) can be understood as a necessary requirement coming from a naive empiricist standpoint.
We discuss the general physical conditions for measuring and observing quantum superpositions.
arXiv Detail & Related papers (2020-07-02T14:30:56Z) - A structure theorem for generalized-noncontextual ontological models [0.0]
We use a process-theoretic framework to prove that every generalized-noncontextual ontological model of a tomographically local operational theory has a surprisingly rigid and simple mathematical structure.
We extend known results concerning the equivalence of different notions of classicality from prepare-measure scenarios to arbitrary compositional scenarios.
arXiv Detail & Related papers (2020-05-14T17:28:19Z) - Emergence of classical behavior in the early universe [68.8204255655161]
Three notions are often assumed to be essentially equivalent, representing different facets of the same phenomenon.
We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times through the lens of geometric structures on the classical phase space.
The analysis shows that: (i) inflation does not play an essential role; classical behavior can emerge much more generally; (ii) the three notions are conceptually distinct; classicality can emerge in one sense but not in another.
arXiv Detail & Related papers (2020-04-22T16:38:25Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z) - A Unified Scientific Basis for Inference [0.0]
It is shown that a natural extension of this discussion gives a conceptual basis from which essential parts of the formalism of quantum mechanics can be derived.
The questions around Bell's inequality are approached by using the conditionality principle for each observer.
arXiv Detail & Related papers (2012-06-22T07:34:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.