Discovering Generative Models from Event Logs: Data-driven Simulation vs
Deep Learning
- URL: http://arxiv.org/abs/2009.03567v1
- Date: Tue, 8 Sep 2020 08:04:06 GMT
- Title: Discovering Generative Models from Event Logs: Data-driven Simulation vs
Deep Learning
- Authors: Manuel Camargo, Marlon Dumas, Oscar Gonzalez-Rojas
- Abstract summary: A generative model is a statistical model that is able to generate new data instances from previously observed ones.
This paper empirically compares a data-driven simulation technique with multiple deep learning techniques, which construct models are capable of generating execution traces with timestamped events.
- Score: 0.6338178373376447
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A generative model is a statistical model that is able to generate new data
instances from previously observed ones. In the context of business processes,
a generative model creates new execution traces from a set of historical
traces, also known as an event log. Two families of generative process
simulation models have been developed in previous work: data-driven simulation
models and deep learning models. Until now, these two approaches have evolved
independently and their relative performance has not been studied. This paper
fills this gap by empirically comparing a data-driven simulation technique with
multiple deep learning techniques, which construct models are capable of
generating execution traces with timestamped events. The study sheds light into
the relative strengths of both approaches and raises the prospect of developing
hybrid approaches that combine these strengths.
Related papers
- A Benchmark Time Series Dataset for Semiconductor Fabrication Manufacturing Constructed using Component-based Discrete-Event Simulation Models [0.0]
This research is based on a benchmark model of an Intel semiconductor fabrication factory.
The time series dataset is constructed using discrete-event time trajectories.
The dataset can also be utilized in the machine learning community for behavioral analysis.
arXiv Detail & Related papers (2024-08-17T23:05:47Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Heat Death of Generative Models in Closed-Loop Learning [63.83608300361159]
We study the learning dynamics of generative models that are fed back their own produced content in addition to their original training dataset.
We show that, unless a sufficient amount of external data is introduced at each iteration, any non-trivial temperature leads the model to degenerate.
arXiv Detail & Related papers (2024-04-02T21:51:39Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Generative Pre-training for Speech with Flow Matching [81.59952572752248]
We pre-trained a generative model, named SpeechFlow, on 60k hours of untranscribed speech with Flow Matching and masked conditions.
Experiment results show the pre-trained generative model can be fine-tuned with task-specific data to match or surpass existing expert models on speech enhancement, separation, and synthesis.
arXiv Detail & Related papers (2023-10-25T03:40:50Z) - On the Stability of Iterative Retraining of Generative Models on their own Data [56.153542044045224]
We study the impact of training generative models on mixed datasets.
We first prove the stability of iterative training under the condition that the initial generative models approximate the data distribution well enough.
We empirically validate our theory on both synthetic and natural images by iteratively training normalizing flows and state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-09-30T16:41:04Z) - Statistical Deep Learning for Spatial and Spatio-Temporal Data [0.0]
We present an overview of traditional statistical and machine learning perspectives for modeling spatial andtemporal data.
We then focus on a variety of hybrid models that have recently been developed for latent process, data, and parameter specifications.
These hybrid models integrate modeling ideas with deep neural network models in order to take advantage of the strengths of each modeling paradigm.
arXiv Detail & Related papers (2022-06-05T16:49:10Z) - Improving Non-autoregressive Generation with Mixup Training [51.61038444990301]
We present a non-autoregressive generation model based on pre-trained transformer models.
We propose a simple and effective iterative training method called MIx Source and pseudo Target.
Our experiments on three generation benchmarks including question generation, summarization and paraphrase generation, show that the proposed framework achieves the new state-of-the-art results.
arXiv Detail & Related papers (2021-10-21T13:04:21Z) - Learning Accurate Business Process Simulation Models from Event Logs via
Automated Process Discovery and Deep Learning [0.8164433158925593]
Data-Driven Simulation (DDS) methods learn process simulation models from event logs.
Deep Learning (DL) models are able to accurately capture such temporal dynamics.
This paper presents a hybrid approach to learn process simulation models from event logs.
arXiv Detail & Related papers (2021-03-22T15:34:57Z) - A Data-driven Market Simulator for Small Data Environments [0.5872014229110214]
Neural network based data-driven market simulation unveils a new and flexible way of modelling financial time series.
We show how a rough paths perspective combined with a parsimonious Variational Autoencoder framework provides a powerful way for encoding and evaluating financial time series.
arXiv Detail & Related papers (2020-06-21T14:04:21Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
We propose a novel method for performing Bayesian model comparison using specialized deep learning architectures.
Our method is purely simulation-based and circumvents the step of explicitly fitting all alternative models under consideration to each observed dataset.
We show that our method achieves excellent results in terms of accuracy, calibration, and efficiency across the examples considered in this work.
arXiv Detail & Related papers (2020-04-22T15:15:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.