Demonstration of a non-Abelian geometric controlled-Not gate in a
superconducting circuit
- URL: http://arxiv.org/abs/2009.03610v3
- Date: Sun, 27 Jun 2021 02:41:00 GMT
- Title: Demonstration of a non-Abelian geometric controlled-Not gate in a
superconducting circuit
- Authors: Kai Xu, Wen Ning, Xin-Jie Huang, Pei-Rong Han, Hekang Li, Zhen-Biao
Yang, Dongning Zheng, Heng Fan, Shi-Biao Zheng
- Abstract summary: We report the first on-chip realization of a non-Abelian geometric controlled-Not gate in a superconducting circuit.
This gate represents an important step towards the all-geometric realization of scalable quantum computation on a superconducting platform.
- Score: 14.11575652583778
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Holonomies, arising from non-Abelian geometric transformations of quantum
states in Hilbert space, offer a promising way for quantum computation. These
holonomies are not commutable and thus can be used for the realization of a
universal set of quantum logic gates, where the global geometric feature may
result in some noise-resilient advantages. Here we report the first on-chip
realization of a non-Abelian geometric controlled-Not gate in a superconducting
circuit, which is a building block for constructing a holonomic quantum
computer. The conditional dynamics is achieved in an all-to-all connected
architecture involving multiple frequency-tunable superconducting qubits
controllably coupled to a resonator; a holonomic gate between any two qubits
can be implemented by tuning their frequencies on resonance with the resonator
and applying a two-tone drive to one of them. This gate represents an important
step towards the all-geometric realization of scalable quantum computation on a
superconducting platform.
Related papers
- Quantum information processing with superconducting circuits: realizing
and characterizing quantum gates and algorithms in open quantum systems [0.0]
This thesis focuses on quantum information processing using the superconducting device.
For the realization of quantum gates and algorithms, a one-step approach is used.
We suggest faster and more efficient schemes for realizing $X$-rotation and entangling gates for two and three qubits.
arXiv Detail & Related papers (2024-01-14T14:31:17Z) - State-independent geometric quantum gates via nonadiabatic and noncyclic
evolution [10.356589142632922]
We propose a scheme for universal quantum gates with pure nonadiabatic and noncyclic geometric phases from smooth evolution paths.
We show that the implemented geometric gates have stronger robustness than dynamical gates and the geometric scheme with cyclic path.
These high-trivial quantum gates are promising for large-scale fault-tolerant quantum computation.
arXiv Detail & Related papers (2023-09-04T02:55:58Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Quantum simulation of $\phi^4$ theories in qudit systems [53.122045119395594]
We discuss the implementation of quantum algorithms for lattice $Phi4$ theory on circuit quantum electrodynamics (cQED) system.
The main advantage of qudit systems is that its multi-level characteristic allows the field interaction to be implemented only with diagonal single-qudit gates.
arXiv Detail & Related papers (2021-08-30T16:30:33Z) - High-fidelity geometric quantum gates with short paths on
superconducting circuits [5.666193021459319]
We propose a scheme to realize nonadiabatic geometric quantum gates with short paths based on simple pulse control techniques.
Specifically, we illustrate the idea on a superconducting quantum circuit, which is one of the most promising platforms for realizing practical quantum computer.
arXiv Detail & Related papers (2021-02-06T10:13:05Z) - Nonadiabatic geometric quantum computation with optimal control on
superconducting circuits [7.703593898562321]
We propose a nonadiabatic geometric quantum computation scheme on superconducting circuits.
Our scheme provides a promising step towards fault-tolerant solid-state quantum computation.
arXiv Detail & Related papers (2020-04-21T08:34:08Z) - Implementation of geometric quantum gates on microwave-driven
semiconductor charge qubits [9.88147281393944]
A semiconductor-based charge qubit, confined in double quantum dots, can be a platform to implement quantum computing.
We provide a theoretical framework to implement universal geometric quantum gates in this system.
arXiv Detail & Related papers (2020-04-01T03:21:46Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.