Quantum steering with vector vortex photon states with the detection
loophole closed
- URL: http://arxiv.org/abs/2009.03918v2
- Date: Fri, 11 Mar 2022 06:50:47 GMT
- Title: Quantum steering with vector vortex photon states with the detection
loophole closed
- Authors: Sergei Slussarenko, Dominick J. Joch, Nora Tischler, Farzad Ghafari,
Lynden K. Shalm, Varun B. Verma, Sae Woo Nam, Geoff J. Pryde
- Abstract summary: Loophole-free verification of nonlocality has been achieved with polarization-entangled photon pairs, but not with states entangled in other degrees of freedom.
Here we demonstrate completion of the quantum steering nonlocality task, with the detection loophole closed.
As well as opening up a high-efficiency encoding beyond polarization, the critically-important demonstration of vector vortex steering opens the door to new free-space and satellite-based secure quantum communication devices and device-independent protocols.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Violating a nonlocality inequality enables the most powerful remote quantum
information tasks and fundamental tests of quantum physics. Loophole-free
photonic verification of nonlocality has been achieved with
polarization-entangled photon pairs, but not with states entangled in other
degrees of freedom. Here we demonstrate completion of the quantum steering
nonlocality task, with the detection loophole closed, when entanglement is
distributed by transmitting a photon in an optical vector vortex state, formed
by optical orbital angular momentum (OAM) and polarization. As well as opening
up a high-efficiency encoding beyond polarization, the critically-important
demonstration of vector vortex steering opens the door to new free-space and
satellite-based secure quantum communication devices and device-independent
protocols.
Related papers
- Deterministic generation of photonic entangled states using decoherence-free subspaces [0.0]
We propose the use of collective states of matter as a resource for the deterministic generation of quantum states of light.
Photon-mediated interactions between the emitters result in the emergence of bright and dark states.
We demonstrate that sequential application of these gates leads to the generation of photonic entangled states.
arXiv Detail & Related papers (2024-10-04T11:22:26Z) - All-optical ultrafast arbitrary rotation of hole orbital qubits with direct phase control [18.591036146528445]
orbital degree of freedom in optically active quantum dots has emerged as a promising candidate.
We demonstrate arbitrary rotation of a hole orbital qubit with direct phase control using picosecond optical pulses.
Results establish orbital states in solid-state quantum emitters as a viable resource for applications in high-speed quantum information processing.
arXiv Detail & Related papers (2024-03-22T15:40:59Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Experimental realization of deterministic and selective photon addition
in a bosonic mode assisted by an ancillary qubit [50.591267188664666]
Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss.
Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states.
Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode.
arXiv Detail & Related papers (2022-12-22T23:32:21Z) - Coherent control of a high-orbital hole in a semiconductor quantum dot [21.05348937863074]
coherent manipulation of single charge carriers in quantum dots is limited mainly to their lowest orbital states.
We demonstrate an all-optical method to control high-orbital states of a hole via stimulated Auger process.
Our work opens new possibilities for understanding the fundamental properties of high-orbital states in quantum emitters.
arXiv Detail & Related papers (2022-12-21T03:49:46Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Deterministic Free-Propagating Photonic Qubits with Negative Wigner
Functions [0.0]
Coherent states ubiquitous in classical and quantum communications, squeezed states used in quantum sensing, and even highly-entangled states studied in the context of quantum computing can be produced deterministically.
We describe the first fully deterministic preparation of non-Gaussian Wigner-negative states of light, obtained by mapping the internal state of an intracavdberg superatom onto an optical qubit.
arXiv Detail & Related papers (2022-09-05T16:37:42Z) - Optimal strategy to certify quantum nonlocality [0.0]
certification of quantum nonlocality plays a central role in practical applications like device-independent quantum cryptography.
We introduce a technique to find a Bell inequality with the largest possible gap between the quantum prediction and the classical local hidden variable limit.
We illustrate our technique by improving the detection of quantum nonlocality from experimental data obtained with weakly entangled photons.
arXiv Detail & Related papers (2021-07-19T19:32:32Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.