Optimal strategy to certify quantum nonlocality
- URL: http://arxiv.org/abs/2107.09120v1
- Date: Mon, 19 Jul 2021 19:32:32 GMT
- Title: Optimal strategy to certify quantum nonlocality
- Authors: S. G\'omez, D. Uzcategui, I. Machuca, E. S. G\'omez, S. P. Walborn, G.
Lima, D. Goyeneche
- Abstract summary: certification of quantum nonlocality plays a central role in practical applications like device-independent quantum cryptography.
We introduce a technique to find a Bell inequality with the largest possible gap between the quantum prediction and the classical local hidden variable limit.
We illustrate our technique by improving the detection of quantum nonlocality from experimental data obtained with weakly entangled photons.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Certification of quantum nonlocality plays a central role in practical
applications like device-independent quantum cryptography and random number
generation protocols. These applications entail the challenging problem of
certifying quantum nonlocality, something that is hard to achieve when the
target quantum state is weakly entangled, or when the source of errors is high,
e.g. when photons propagate through the atmosphere or a long optical fiber.
Here, we introduce a technique to find a Bell inequality with the largest
possible gap between the quantum prediction and the classical local hidden
variable limit for a given set of measurement frequencies. Our method
represents an efficient strategy to certify quantum nonlocal correlations from
experimental data without requiring extra measurements, in the sense that there
is no Bell inequality with a larger gap than the one provided. Furthermore, we
also reduce the photodetector efficiency required to close the detection
loophole. We illustrate our technique by improving the detection of quantum
nonlocality from experimental data obtained with weakly entangled photons.
Related papers
- Losses resistant verification of quantum non-Gaussian photon statistics [5.292867550832236]
Quantum non-Gaussian states of light have fundamental properties that are essential for a multitude of applications in quantum technology.
Many features are difficult to detect using standard criteria due to optical losses and detector inefficiency.
We employ a loss-mitigated verification technique utilising quantum non-Gaussian witnesses, which incorporate the known optical losses and detector inefficiency into their derivation.
arXiv Detail & Related papers (2024-08-21T12:54:46Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Photonic quantum metrology with variational quantum optical
non-linearities [0.0]
Photonic quantum metrology harnesses quantum states of light to measure unknown parameters beyond classical precision limits.
Current protocols suffer from two severe limitations that preclude their scalability.
Here, we develop a deterministic protocol combining quantum optical non-linearities and variational quantum algorithms.
arXiv Detail & Related papers (2023-09-18T14:57:44Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - Experimental Multi-state Quantum Discrimination in the Frequency Domain
with Quantum Dot Light [40.96261204117952]
In this work, we present the experimental realization of a protocol employing a time-multiplexing strategy to optimally discriminate among eight non-orthogonal states.
The experiment was built on a custom-designed bulk optics analyser setup and single photons generated by a nearly deterministic solid-state source.
Our work paves the way for more complex applications and delivers a novel approach towards high-dimensional quantum encoding and decoding operations.
arXiv Detail & Related papers (2022-09-17T12:59:09Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Quantum non-Gaussianity certification of photon-number-resolving
detectors [0.0]
We report on direct experimental certification of the quantum non-Gaussian character of a photon-number resolving detector.
certification protocol is based on an adaptation of the existing quantum non-Gaussianity criteria for quantum states to quantum measurements.
arXiv Detail & Related papers (2022-08-26T09:27:05Z) - Single-photon nonlocality in quantum networks [55.41644538483948]
We show that the nonlocality of single-photon entangled states can nevertheless be revealed in a quantum network made only of beamsplitters and photodetectors.
Our results show that single-photon entanglement may constitute a promising solution to generate genuine network-nonlocal correlations useful for Bell-based quantum information protocols.
arXiv Detail & Related papers (2021-08-03T20:13:24Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Scalable multiphoton quantum metrology with neither pre- nor
post-selected measurements [0.0]
We experimentally demonstrate a scalable protocol for quantum-enhanced optical phase estimation.
The robustness of two-mode squeezed vacuum states against loss allows us to outperform schemes based on N00N states.
Our work is important for quantum technologies that rely on multiphoton interference.
arXiv Detail & Related papers (2020-11-04T18:11:33Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.