Fiber Bundle Codes: Breaking the $N^{1/2} \operatorname{polylog}(N)$
Barrier for Quantum LDPC Codes
- URL: http://arxiv.org/abs/2009.03921v2
- Date: Mon, 26 Oct 2020 18:03:55 GMT
- Title: Fiber Bundle Codes: Breaking the $N^{1/2} \operatorname{polylog}(N)$
Barrier for Quantum LDPC Codes
- Authors: Matthew B. Hastings, Jeongwan Haah, Ryan O'Donnell
- Abstract summary: We present a quantum LDPC code family that has distance greater than $Omega(N3/5/operatornamepolylog(N))$.
This is the first quantum LDPC code construction which achieves distance greater than $N1/2 operatornamepolylog(N)$.
- Score: 1.2246649738388389
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a quantum LDPC code family that has distance
$\Omega(N^{3/5}/\operatorname{polylog}(N))$ and $\tilde\Theta(N^{3/5})$ logical
qubits. This is the first quantum LDPC code construction which achieves
distance greater than $N^{1/2} \operatorname{polylog}(N)$. The construction is
based on generalizing the homological product of codes to a fiber bundle.
Related papers
- Quantum LDPC Codes with Transversal Non-Clifford Gates via Products of Algebraic Codes [0.9208007322096533]
We construct an explicit infinite family of quantum LDPC codes supporting a $Cr-1Z$ gate with length $N$, dimension $Kgeq N1-epsilon$, distance $Dgeq N1/r/namepoly(log N)$, and stabilizer weight $wleqoperatorname(log N)$.
arXiv Detail & Related papers (2024-10-18T17:52:59Z) - SSIP: automated surgery with quantum LDPC codes [55.2480439325792]
We present Safe Surgery by Identifying Pushouts (SSIP), an open-source lightweight Python package for automating surgery between qubit CSS codes.
Under the hood, it performs linear algebra over $mathbbF$ governed by universal constructions in the category of chain complexes.
We show that various logical measurements can be performed cheaply by surgery without sacrificing the high code distance.
arXiv Detail & Related papers (2024-07-12T16:50:01Z) - Spacetime-Efficient Low-Depth Quantum State Preparation with
Applications [93.56766264306764]
We show that a novel deterministic method for preparing arbitrary quantum states requires fewer quantum resources than previous methods.
We highlight several applications where this ability would be useful, including quantum machine learning, Hamiltonian simulation, and solving linear systems of equations.
arXiv Detail & Related papers (2023-03-03T18:23:20Z) - Exponential Separation between Quantum and Classical Ordered Binary
Decision Diagrams, Reordering Method and Hierarchies [68.93512627479197]
We study quantum Ordered Binary Decision Diagrams($OBDD$) model.
We prove lower bounds and upper bounds for OBDD with arbitrary order of input variables.
We extend hierarchy for read$k$-times Ordered Binary Decision Diagrams ($k$-OBDD$) of width.
arXiv Detail & Related papers (2022-04-22T12:37:56Z) - Morphing quantum codes [77.34726150561087]
We morph the 15-qubit Reed-Muller code to obtain the smallest known stabilizer code with a fault-tolerant logical $T$ gate.
We construct a family of hybrid color-toric codes by morphing the color code.
arXiv Detail & Related papers (2021-12-02T17:43:00Z) - Quantifying nonlocality: how outperforming local quantum codes is
expensive [0.06091702876917279]
Quantum low-density parity-check (LDPC) codes are a promising avenue to reduce the cost of constructing scalable quantum circuits.
We show that quantum LDPC codes implemented through local interactions obey restrictions on their dimension $k$ and distance $d$.
In particular, in 2D we show that a quantum LDPC with distance $n1/2 + epsilon$ code requires $Omega(n1/2 + epsilon)$ interactions of length $widetildeOmega(nepsilon)$.
arXiv Detail & Related papers (2021-09-22T18:55:45Z) - On Quantum Weight Reduction [0.0]
We introduce a new technique that we call "coning" to effectively induce high weight stabilizers in an LDPC code.
As one application, any LDPC code (with arbitrary $O(1)$ stabilizer weights) may be turned into a code where all stabilizers have weight at most $5$.
arXiv Detail & Related papers (2021-02-19T17:01:29Z) - Balanced Product Quantum Codes [5.33024001730262]
This work provides the first explicit and non-random family of $[[N,K,D]]$ LDPC quantum codes.
The family is constructed by amalgamating classical codes and Ramanujan graphs via an operation called balanced product.
arXiv Detail & Related papers (2020-12-16T21:19:38Z) - Quantum LDPC Codes with Almost Linear Minimum Distance [0.0]
We give a construction of quantum LDPC codes of dimension $Theta(log N)$ and distance $Theta(N/log N)$ as the code length $Ntoinfty$.
We show that for any fixed $R 1$ there exists an quasi-cyclically good family of classical LDPC codes of rate at least $R$ with, in some sense, optimal circulant size $Omega(N/log N)$ as the code length $Ntoinfty$.
arXiv Detail & Related papers (2020-12-07T21:20:53Z) - An Optimal Separation of Randomized and Quantum Query Complexity [67.19751155411075]
We prove that for every decision tree, the absolute values of the Fourier coefficients of a given order $ellsqrtbinomdell (1+log n)ell-1,$ sum to at most $cellsqrtbinomdell (1+log n)ell-1,$ where $n$ is the number of variables, $d$ is the tree depth, and $c>0$ is an absolute constant.
arXiv Detail & Related papers (2020-08-24T06:50:57Z) - Quantum Differentially Private Sparse Regression Learning [132.1981461292324]
We devise an efficient quantum differentially private (QDP) Lasso estimator to solve sparse regression tasks.
Last, we exhibit that the QDP Lasso attains a near-optimal utility bound $tildeO(N-2/3)$ with privacy guarantees.
arXiv Detail & Related papers (2020-07-23T10:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.