Quantum LDPC Codes of Almost Linear Distance via Homological Products
- URL: http://arxiv.org/abs/2411.03646v1
- Date: Wed, 06 Nov 2024 03:53:10 GMT
- Title: Quantum LDPC Codes of Almost Linear Distance via Homological Products
- Authors: Louis Golowich, Venkatesan Guruswami,
- Abstract summary: We present new constructions of quantum codes of linear or close-to-linear distance and dimension with low-weight stabilizers.
Our results help address the natural question: When do homological products preserve good code distance?
- Score: 23.22566380210149
- License:
- Abstract: We present new constructions of quantum codes of linear or close-to-linear distance and dimension with low-weight stabilizers. Only a few constructions of such codes were previously known, and were primarily based on a specific operation from homological algebra, namely the balanced product. In contrast, our constructions are based on a more basic and widely used product, namely the homological product (i.e. the tensor product of chain complexes). Our results help address the natural question: When do homological products preserve good code distance? Our first main result constructs asymptotically good $[[N,\Theta(N),\Theta(N)]]$ quantum codes with small polynomial stabilizer weight from homological products of codes with a property called product-expansion. This notion was recently introduced and used to bound the distance of balanced product quantum codes; we apply it instead to homological products. For every $\epsilon>0$, our second main result constructs close-to-linear distance $[[N,N^{1-\epsilon},N^{1-\epsilon}]]$ (subsystem) quantum LDPC codes with constant stabilizer weight from iterated homological products of a constant-sized quantum locally testable code. The key insight here is that by using subsystem codes (but still with constant-weight stabilizers), we can circumvent a particular obstruction that limited the distance of many prior product code constructions to at most $\tilde{O}(\sqrt{N})$.
Related papers
- List Decodable Quantum LDPC Codes [49.2205789216734]
We give a construction of Quantum Low-Density Parity Check (QLDPC) codes with near-optimal rate-distance tradeoff.
We get efficiently list decodable QLDPC codes with unique decoders.
arXiv Detail & Related papers (2024-11-06T23:08:55Z) - Quantum LDPC Codes with Transversal Non-Clifford Gates via Products of Algebraic Codes [0.9208007322096533]
We construct an explicit infinite family of quantum LDPC codes supporting a $Cr-1Z$ gate with length $N$, dimension $Kgeq N1-epsilon$, distance $Dgeq N1/r/namepoly(log N)$, and stabilizer weight $wleqoperatorname(log N)$.
arXiv Detail & Related papers (2024-10-18T17:52:59Z) - SSIP: automated surgery with quantum LDPC codes [55.2480439325792]
We present Safe Surgery by Identifying Pushouts (SSIP), an open-source lightweight Python package for automating surgery between qubit CSS codes.
Under the hood, it performs linear algebra over $mathbbF$ governed by universal constructions in the category of chain complexes.
We show that various logical measurements can be performed cheaply by surgery without sacrificing the high code distance.
arXiv Detail & Related papers (2024-07-12T16:50:01Z) - Quantum Lego Expansion Pack: Enumerators from Tensor Networks [1.489619600985197]
We provide the first tensor network method for computing quantum weight enumerators in the most general form.
For non-(Pauli)-stabilizer codes, this constitutes the current best algorithm for computing the code distance.
We show that these enumerators can be used to compute logical error rates exactly and thus construct decoders for any i.i.d. single qubit or qudit error channels.
arXiv Detail & Related papers (2023-08-09T18:00:02Z) - Homological Quantum Rotor Codes: Logical Qubits from Torsion [51.9157257936691]
homological quantum rotor codes allow one to encode both logical rotors and logical qudits in the same block of code.
We show that the $0$-$pi$-qubit as well as Kitaev's current-mirror qubit are indeed small examples of such codes.
arXiv Detail & Related papers (2023-03-24T00:29:15Z) - Average-case Speedup for Product Formulas [69.68937033275746]
Product formulas, or Trotterization, are the oldest and still remain an appealing method to simulate quantum systems.
We prove that the Trotter error exhibits a qualitatively better scaling for the vast majority of input states.
Our results open doors to the study of quantum algorithms in the average case.
arXiv Detail & Related papers (2021-11-09T18:49:48Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
We show that the problem of calculating the $c-disjointness, or even approximating it to within a constant multiplicative factor, is NP-complete.
We provide bounds on the disjointness for various code families, including the CSS codes,$d codes and hypergraph codes.
Our results indicate that finding fault-tolerant logical gates for generic quantum error-correcting codes is a computationally challenging task.
arXiv Detail & Related papers (2021-08-10T15:00:20Z) - On Quantum Weight Reduction [0.0]
We introduce a new technique that we call "coning" to effectively induce high weight stabilizers in an LDPC code.
As one application, any LDPC code (with arbitrary $O(1)$ stabilizer weights) may be turned into a code where all stabilizers have weight at most $5$.
arXiv Detail & Related papers (2021-02-19T17:01:29Z) - Balanced Product Quantum Codes [5.33024001730262]
This work provides the first explicit and non-random family of $[[N,K,D]]$ LDPC quantum codes.
The family is constructed by amalgamating classical codes and Ramanujan graphs via an operation called balanced product.
arXiv Detail & Related papers (2020-12-16T21:19:38Z) - Quantum LDPC Codes with Almost Linear Minimum Distance [0.0]
We give a construction of quantum LDPC codes of dimension $Theta(log N)$ and distance $Theta(N/log N)$ as the code length $Ntoinfty$.
We show that for any fixed $R 1$ there exists an quasi-cyclically good family of classical LDPC codes of rate at least $R$ with, in some sense, optimal circulant size $Omega(N/log N)$ as the code length $Ntoinfty$.
arXiv Detail & Related papers (2020-12-07T21:20:53Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.