Closure of the entanglement gap at quantum criticality: The case of the
Quantum Spherical Model
- URL: http://arxiv.org/abs/2009.04235v1
- Date: Wed, 9 Sep 2020 12:00:15 GMT
- Title: Closure of the entanglement gap at quantum criticality: The case of the
Quantum Spherical Model
- Authors: Sascha Wald, Raul Arias, Vincenzo Alba
- Abstract summary: We investigate the scaling of the entanglement gap $deltaxi$, i.e., the lowest laying gap of the entanglement spectrum, at a two-dimensional quantum critical point.
We analytically show that the Schmidt gap vanishes at the critical point, although only logarithmically.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The study of entanglement spectra is a powerful tool to detect or elucidate
universal behaviour in quantum many-body systems. We investigate the scaling of
the entanglement (or Schmidt) gap $\delta\xi$, i.e., the lowest laying gap of
the entanglement spectrum, at a two-dimensional quantum critical point. We
focus on the paradigmatic quantum spherical model, which exhibits a
second-order transition, and is mappable to free bosons with an additional
external constraint. We analytically show that the Schmidt gap vanishes at the
critical point, although only logarithmically. For a system on a torus and the
half-system bipartition, the entanglement gap vanishes as $\pi^2/\ln(L)$, with
$L$ the linear system size. The entanglement gap is nonzero in the paramagnetic
phase and exhibits a faster decay in the ordered phase. The rescaled gap
$\delta\xi\ln(L)$ exhibits a crossing for different system sizes at the
transition, although logarithmic corrections prevent a precise verification of
the finite-size scaling. Interestingly, the change of the entanglement gap
across the phase diagram is reflected in the zero-mode eigenvector of the
spin-spin correlator. At the transition quantum fluctuations give rise to a
non-trivial structure of the eigenvector, whereas in the ordered phase it is
flat. We also show that the vanishing of the entanglement gap at criticality
can be qualitatively but not quantitatively captured by neglecting the
structure of the zero-mode eigenvector.
Related papers
- KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Tunable quantum criticality and pseudocriticality across the fixed-point
annihilation in the anisotropic spin-boson model [0.26107298043931204]
We study the nontrivial renormalization-group scenario of fixed-point annihilation in spin-boson models.
We find a tunable transition between two localized phases that can be continuous or strongly first-order.
We also find scaling behavior at the symmetry-enhanced first-order transition, for which the inverse correlation-length exponent is given by the bath exponent.
arXiv Detail & Related papers (2024-03-04T19:00:07Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Scalable Spin Squeezing from Finite Temperature Easy-plane Magnetism [26.584014467399378]
We conjecture that any Hamiltonian exhibiting finite temperature, easy-plane ferromagnetism can be used to generate scalable spin squeezing.
Our results provide insights into the landscape of Hamiltonians that can be used to generate metrologically useful quantum states.
arXiv Detail & Related papers (2023-01-23T18:59:59Z) - Quantum lozenge tiling and entanglement phase transition [5.201207023965752]
We construct a frustration-free Hamiltonian with maximal violation of the area law.
It is conjectured that similar models with entanglement phase transitions can be built in higher dimensions.
arXiv Detail & Related papers (2022-10-03T17:33:37Z) - Entanglement spectrum and quantum phase diagram of the long-range XXZ
chain [0.0]
We investigate the entanglement spectrum of the long-range XXZ model.
We show that within the critical phase it exhibits a remarkable self-similarity.
Our results pave the way to further studies of entanglement properties in long-range quantum models.
arXiv Detail & Related papers (2022-02-27T11:39:01Z) - Quantum many-body spin rings coupled to ancillary spins: The sunburst
quantum Ising model [0.0]
We study a quantum "sunburst model" composed of a quantum Ising spin-ring in a transverse field.
We observe rapid and nonanalytic changes in proximity of the quantum transitions of the Ising ring.
arXiv Detail & Related papers (2022-02-16T11:22:19Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Doubly Modulated Optical Lattice Clock Interference and Topology [17.566717348287685]
We simultaneously modulate the frequency of the lattice laser and the Rabi frequency in an optical lattice clock (OLC) system.
Thanks to ultra-high precision and ultra-stability of OLC, the relative phase could be fine-tuned.
By experimentally detecting the eigen-energies, we demonstrate the relation between effective Floquet Hamiltonian and 1-D topological insulator with high winding number.
arXiv Detail & Related papers (2020-09-24T13:20:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.