Doubly Modulated Optical Lattice Clock Interference and Topology
- URL: http://arxiv.org/abs/2009.11671v2
- Date: Wed, 14 Jul 2021 23:55:00 GMT
- Title: Doubly Modulated Optical Lattice Clock Interference and Topology
- Authors: Xiao-Tong Lu, Tao Wang, Ting Li, Chi-Hua Zhou, Mo-Juan Yin, Ye-Bing
Wang, Xue-Feng Zhang, and Hong Chang
- Abstract summary: We simultaneously modulate the frequency of the lattice laser and the Rabi frequency in an optical lattice clock (OLC) system.
Thanks to ultra-high precision and ultra-stability of OLC, the relative phase could be fine-tuned.
By experimentally detecting the eigen-energies, we demonstrate the relation between effective Floquet Hamiltonian and 1-D topological insulator with high winding number.
- Score: 17.566717348287685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum system under periodical modulation is the simplest path to
understand the quantum non-equilibrium system, because it can be well described
by the effective static Floquet Hamiltonian. Under the stroboscopic
measurement, the initial phase is usually irrelevant. However, if two
uncorrelated parameters are modulated, their relative phase can not be gauged
out, so that the physics can be dramatically changed. Here, we simultaneously
modulate the frequency of the lattice laser and the Rabi frequency in an
optical lattice clock (OLC) system. Thanks to ultra-high precision and
ultra-stability of OLC, the relative phase could be fine-tuned. As a smoking
gun, we observed the interference between two Floquet channels. Finally, by
experimentally detecting the eigen-energies, we demonstrate the relation
between effective Floquet Hamiltonian and 1-D topological insulator with high
winding number. Our experiment not only provides a direction for detecting the
phase effect, but also paves a way in simulating quantum topological phase in
OLC platform.
Related papers
- A dissipation-induced superradiant transition in a strontium cavity-QED system [0.0]
In cavity quantum electrodynamics (QED), emitters and a resonator are coupled together to enable precise studies of quantum light-matter interactions.
Here we provide an observation of the continuous superradiant phase transition predicted in the CRF model using an ensemble of ultracold $88$Sr atoms.
Our observations are a first step towards finer control of driven-dissipative systems, which have been predicted to generate quantum states.
arXiv Detail & Related papers (2024-08-20T18:00:00Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Pure Dephasing of Light-Matter Systems in the Ultrastrong and
Deep-Strong Coupling Regimes [0.21108097398435333]
Pure dephasing originates from the non-dissipative information exchange between quantum systems and environments.
Here we investigate how pure dephasing of one of the components of a hybrid quantum system affects the dephasing rate of the system transitions.
arXiv Detail & Related papers (2022-05-11T08:57:15Z) - Controlling topological phases of matter with quantum light [0.0]
Controlling the topological properties of quantum matter is a major goal of condensed matter physics.
We consider a prototypical model for topological phase transition, the one-dimensional Su-Schrieffer-Heeger (SSH) model, coupled to a single mode cavity.
We show that depending on the lattice geometry and the strength of light-matter coupling one can either turn a trivial phase into a topological one or viceversa.
arXiv Detail & Related papers (2022-04-12T16:27:10Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Observation of a quantum phase transition in the quantum Rabi model with
a single trapped ion [0.0]
Quantum phase transitions (QPTs) are usually associated with many-body systems with large degrees of freedom approaching the thermodynamic limit.
It has been realized that a QPT can occur in a simple system composed of only a two-level atom and a single-mode bosonic field.
We report the first experimental demonstration of a QPT in the quantum Rabi model using a single trapped ion.
arXiv Detail & Related papers (2021-02-10T13:03:37Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Finite-component dynamical quantum phase transitions [0.0]
We show two types of dynamical quantum phase transitions (DQPTs) in a quantum Rabi model.
One refers to distinct phases according to long-time averaged order parameters, the other is focused on the non-analytical behavior emerging in the rate function of the Loschmidt echo.
We find the critical times at which the rate function becomes non-analytical, showing its associated critical exponent as well as the corrections introduced by a finite frequency ratio.
arXiv Detail & Related papers (2020-08-31T17:31:17Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.