Quantum lozenge tiling and entanglement phase transition
- URL: http://arxiv.org/abs/2210.01098v3
- Date: Tue, 08 Oct 2024 12:46:44 GMT
- Title: Quantum lozenge tiling and entanglement phase transition
- Authors: Zhao Zhang, Israel Klich,
- Abstract summary: We construct a frustration-free Hamiltonian with maximal violation of the area law.
It is conjectured that similar models with entanglement phase transitions can be built in higher dimensions.
- Score: 5.201207023965752
- License:
- Abstract: While volume violation of area law has been exhibited in several quantum spin chains, the construction of a corresponding ground state in higher dimensions, entangled in more than one direction, has been an open problem. Here we construct a 2D frustration-free Hamiltonian with maximal violation of the area law. We do so by building a quantum model of random surfaces with color degree of freedom that can be viewed as a collection of colored Dyck paths. The Hamiltonian may be viewed as a 2D generalization of the Fredkin spin chain. It relates all the colored random surface configurations subject to a Dirichlet boundary condition and hard wall constraint from below to one another, and the ground state is therefore a superposition of all such classical states and non-degenerate. Its entanglement entropy between subsystems undergoes a quantum phase transition as the deformation parameter is tuned. The area- and volume-law phases are similar to the one-dimensional model, while the critical point scales with the linear size of the system $L$ as $L\log L$. Further it is conjectured that similar models with entanglement phase transitions can be built in higher dimensions with even softer area law violations at the critical point.
Related papers
- Triggering Boundary Phase Transitions through Bulk Measurements in 2D
Cluster States [20.295517930821084]
We investigate the phase diagram at the boundary of an infinite two-dimensional cluster state subject to bulk measurements.
Our results show that the boundary of the system exhibits volume-law entanglement at the measurement angle.
These findings demonstrate that the phase diagram of the boundary of a two-dimensional system can be more intricate than that of a standard one-dimensional system.
arXiv Detail & Related papers (2023-05-23T16:46:32Z) - Structured volume-law entanglement in an interacting, monitored Majorana
spin liquid [0.0]
We show that random, measurement-only circuits give rise to a structured volume-law entangled phase with subleading $L ln L$ liquid scaling behavior.
The sphere itself is a critical boundary with quantum Lifshitz scaling separating the volume-law phase from proximate area-law phases, a color code or a toric code.
arXiv Detail & Related papers (2023-03-30T18:00:01Z) - Scalable Spin Squeezing from Finite Temperature Easy-plane Magnetism [26.584014467399378]
We conjecture that any Hamiltonian exhibiting finite temperature, easy-plane ferromagnetism can be used to generate scalable spin squeezing.
Our results provide insights into the landscape of Hamiltonians that can be used to generate metrologically useful quantum states.
arXiv Detail & Related papers (2023-01-23T18:59:59Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Coupled Fredkin and Motzkin chains from quantum six- and nineteen-vertex
models [4.965221313169878]
We generalize the area-law violating models of Fredkin and Motzkin spin chains into two dimensions.
The Hamiltonian is frustration free, and its projectors generate ergodic dynamics within the subspace of height configuration that are non negative.
arXiv Detail & Related papers (2022-10-06T16:46:05Z) - Measurement induced entanglement transition in two dimensional shallow
circuit [5.691318972818067]
We study the entanglement structure of the remaining qubits on the one dimensional boundary.
In the first model, we observe that the competition between the bulk X and Z measurements can lead to an entanglement phase transition.
We give an interpretation of this transition in terms of random bond Ising model in a similar shallow circuit composed of random Haar gates.
arXiv Detail & Related papers (2022-03-14T21:41:28Z) - Peratic Phase Transition by Bulk-to-Surface Response [26.49714398456829]
We show a duality between many-body dynamics and static Hamiltonian ground states for both classical and quantum systems.
Our prediction of peratic phase transition has direct consequences in quantum simulation platforms such as Rydberg atoms and superconducting qubits.
arXiv Detail & Related papers (2021-09-27T18:00:01Z) - Multipartite entanglement of the topologically ordered state in a
perturbed toric code [18.589873789289562]
We demonstrate that multipartite entanglement, witnessed by the quantum Fisher information (QFI), can characterize topological quantum phase transitions in the spin-$frac12$ toric code model.
Our results provide insights to topological phases, which are robust against external disturbances, and are candidates for topologically protected quantum computation.
arXiv Detail & Related papers (2021-09-07T20:20:21Z) - Measurement-induced criticality and entanglement clusters: a study of 1D
and 2D Clifford circuits [0.0]
Entanglement transitions in quantum dynamics present a novel class of phase transitions in non-equilibrium systems.
We study the critical properties of 2D Clifford circuits.
We show that in a model with a simple geometric map to percolation, the entanglement clusters are governed by percolation surface exponents.
arXiv Detail & Related papers (2020-12-07T17:08:03Z) - Closure of the entanglement gap at quantum criticality: The case of the
Quantum Spherical Model [0.0]
We investigate the scaling of the entanglement gap $deltaxi$, i.e., the lowest laying gap of the entanglement spectrum, at a two-dimensional quantum critical point.
We analytically show that the Schmidt gap vanishes at the critical point, although only logarithmically.
arXiv Detail & Related papers (2020-09-09T12:00:15Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.