論文の概要: Automated Model Selection for Time-Series Anomaly Detection
- arxiv url: http://arxiv.org/abs/2009.04395v1
- Date: Tue, 25 Aug 2020 07:23:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 04:36:06.998776
- Title: Automated Model Selection for Time-Series Anomaly Detection
- Title(参考訳): 時系列異常検出のための自動モデル選択
- Authors: Yuanxiang Ying, Juanyong Duan, Chunlei Wang, Yujing Wang, Congrui
Huang, Bixiong Xu
- Abstract要約: 多くの企業は、アプリケーションやサービスに対する何千もの時間的信号を監視し、時間内のインシデントに対する即時フィードバックと警告を必要とします。
このタスクは、乱雑でしばしば適切なラベルのない時系列の複雑な特性のため、難しい。
これはラベルの欠如と単一のモデルが異なる時系列にほとんど適合しないため、教師付きモデルのトレーニングを禁止している。
本稿では、入力データに対して適切なパラメータを持つ最も適切な検出モデルを自動的に見つけるための自動モデル選択フレームワークを提案する。
- 参考スコア(独自算出の注目度): 6.396011708581161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time-series anomaly detection is a popular topic in both academia and
industrial fields. Many companies need to monitor thousands of temporal signals
for their applications and services and require instant feedback and alerts for
potential incidents in time. The task is challenging because of the complex
characteristics of time-series, which are messy, stochastic, and often without
proper labels. This prohibits training supervised models because of lack of
labels and a single model hardly fits different time series. In this paper, we
propose a solution to address these issues. We present an automated model
selection framework to automatically find the most suitable detection model
with proper parameters for the incoming data. The model selection layer is
extensible as it can be updated without too much effort when a new detector is
available to the service. Finally, we incorporate a customized tuning algorithm
to flexibly filter anomalies to meet customers' criteria. Experiments on
real-world datasets show the effectiveness of our solution.
- Abstract(参考訳): 時系列異常検出は、学術分野と産業分野の両方で一般的なトピックである。
多くの企業は、アプリケーションやサービスの何千という時間的シグナルを監視し、潜在的なインシデントに対する即時のフィードバックとアラートを必要とする。
このタスクは、乱雑で確率的であり、しばしば適切なラベルを持たない、時系列の複雑な特性のために難しい。
これはラベルの欠如と単一のモデルが異なる時系列にほとんど適合しないため、教師付きモデルのトレーニングを禁止している。
本稿では,この問題に対する解決策を提案する。
入力データに対して適切なパラメータを持つ最も適切な検出モデルを自動的に見つけるための自動モデル選択フレームワークを提案する。
モデル選択層は拡張可能であり、サービスに新しい検出器が利用できる場合、あまり手間をかけずに更新できる。
最後に,カスタマイズしたチューニングアルゴリズムを導入して,ユーザの基準に合致する異常を柔軟にフィルタする。
実世界のデータセットの実験は、我々のソリューションの有効性を示している。
関連論文リスト
- TeVAE: A Variational Autoencoder Approach for Discrete Online Anomaly Detection in Variable-state Multivariate Time-series Data [0.017476232824732776]
本研究では,時間変動型オートエンコーダ(TeVAE)を提案する。
適切に設定された場合、TeVAEは異常を6%だけ間違ったタイミングでフラグし、65%の異常を検知する。
論文 参考訳(メタデータ) (2024-07-09T13:32:33Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - LARA: A Light and Anti-overfitting Retraining Approach for Unsupervised
Time Series Anomaly Detection [49.52429991848581]
深部変分自動エンコーダに基づく時系列異常検出手法(VAE)のための光・反オーバーフィット学習手法(LARA)を提案する。
本研究の目的は,1) 再学習過程を凸問題として定式化し, 過度に収束できること,2) 履歴データを保存せずに活用するルミネートブロックを設計すること,3) 潜在ベクトルと再構成データの微調整を行うと, 線形形成が基底真実と微調整されたブロックとの誤りを最小に調整できることを数学的に証明することである。
論文 参考訳(メタデータ) (2023-10-09T12:36:16Z) - An Automated Machine Learning Approach for Detecting Anomalous Peak
Patterns in Time Series Data from a Research Watershed in the Northeastern
United States Critical Zone [3.1747517745997014]
本稿では,米国北東部臨界水域におけるセンサによる時系列データの異常検出を支援する機械学習フレームワークを提案する。
このフレームワークは特に、センサーの故障や自然現象から生じるピークパターンの異常を識別することに焦点を当てている。
論文 参考訳(メタデータ) (2023-09-14T19:07:50Z) - MOSPAT: AutoML based Model Selection and Parameter Tuning for Time
Series Anomaly Detection [8.942168855247548]
MOSPATは、モデルとパラメータの選択のためのエンドツーエンドの機械学習ベースのアプローチである。
実データおよび合成データを用いた実験により, この手法は, 一つのアルゴリズムを用いて一貫した性能を発揮することを示した。
論文 参考訳(メタデータ) (2022-05-24T03:28:52Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Time Series Anomaly Detection with label-free Model Selection [0.6303112417588329]
ラベルのない時系列データに対するラベルなしモデル選択を用いた新しい異常検出アルゴリズムであるLaF-ADを提案する。
我々のアルゴリズムは容易に並列化可能であり、不条件データや季節データに対してより堅牢であり、多数の異常モデルに対して非常にスケーラブルである。
論文 参考訳(メタデータ) (2021-06-11T00:21:06Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Diverse Complexity Measures for Dataset Curation in Self-driving [80.55417232642124]
トラフィックシーンの面白さを定量化する多様な基準を活用した新たなデータ選択手法を提案する。
実験の結果,提案するキュレーションパイプラインは,より汎用的で高いパフォーマンスをもたらすデータセットを選択できることが判明した。
論文 参考訳(メタデータ) (2021-01-16T23:45:02Z) - Building an Automated and Self-Aware Anomaly Detection System [0.0]
異常に対して多種多様かつ常に変化する時系列を積極的に監視することは困難である。
伝統的に、データ生成プロセスとパターンのバリエーションは、異常を正確にフラグするモデルを作成するために、強力なモデリングの専門知識を必要としてきた。
本稿では,手作業による介入を必要とせず,各モデルに必要な変更を加えることで,この共通課題を克服する異常検出システムについて述べる。
論文 参考訳(メタデータ) (2020-11-10T11:19:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。