論文の概要: Formalizing Integration Patterns with Multimedia Data (Extended Version)
- arxiv url: http://arxiv.org/abs/2009.04589v2
- Date: Thu, 8 Apr 2021 17:23:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 11:39:38.499707
- Title: Formalizing Integration Patterns with Multimedia Data (Extended Version)
- Title(参考訳): マルチメディアデータによる統合パターンの形式化(拡張版)
- Authors: Marco Montali, Andrey Rivkin, Daniel Ritter
- Abstract要約: 本稿では,マルチメディアドメインからの要求に対処するペトリネット方式のフォーマリズムを提案する。
また、最も頻繁に使用されるマルチメディアパターンの1つを実演する。
- 参考スコア(独自算出の注目度): 5.968630346182973
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The previous works on formalizing enterprise application integration (EAI)
scenarios showed an emerging need for setting up formal foundations for
integration patterns, the EAI building blocks, in order to facilitate the
model-driven development and ensure its correctness. So far, the formalization
requirements were focusing on more "conventional" integration scenarios, in
which control-flow, transactional persistent data and time aspects were
considered. However, none of these works took into consideration another
arising EAI trend that covers social and multimedia computing. In this work we
propose a Petri net-based formalism that addresses requirements arising from
the multimedia domain. We also demonstrate realizations of one of the most
frequently used multimedia patterns and discuss which implications our formal
proposal may bring into the area of the multimedia EAI development.
- Abstract(参考訳): エンタープライズアプリケーション統合(EAI)シナリオの形式化に関する以前の作業は、モデル駆動開発を容易にし、その正確性を保証するために、統合パターン、EAIビルディングブロックの正式な基盤を設定する必要性が高まっていることを示している。
これまでの形式化要件は、制御フロー、トランザクション永続データ、時間的側面を考慮した、より"慣習的な"統合シナリオに焦点を当てていた。
しかし、これらの研究は、ソーシャルおよびマルチメディアコンピューティングをカバーする別のEAIトレンドを考慮していない。
本研究では,マルチメディアドメインからの要求に対処するペトリネットに基づく形式論を提案する。
我々はまた、最も頻繁に使われるマルチメディアパターンの1つを実演し、私たちの正式な提案がマルチメディアEAI開発にどのような影響を及ぼすかについて議論する。
関連論文リスト
- On the Utility of Domain Modeling Assistance with Large Language Models [2.874893537471256]
本稿では,大規模言語モデル(LLM)とドメインモデリング支援のための数発のプロンプト学習を利用した新しいアプローチの有用性を評価する。
このアプローチの目的は、不足するドメイン固有のデータセット上で、AIベースの補完モデルの広範なトレーニングの必要性を克服することである。
論文 参考訳(メタデータ) (2024-10-16T13:55:34Z) - A Practitioner's Guide to Continual Multimodal Pretraining [83.63894495064855]
マルチモーダル・ファンデーション・モデルは視覚と言語を交わす多くのアプリケーションに役立っている。
モデルを更新し続けるために、継続事前トレーニングの研究は主に、大規模な新しいデータに対する頻度の低い、差別的な更新、あるいは頻繁に行われるサンプルレベルの更新のシナリオを探求する。
本稿では,FoMo-in-Flux(FoMo-in-Flux)について紹介する。
論文 参考訳(メタデータ) (2024-08-26T17:59:01Z) - Missing Modality Prediction for Unpaired Multimodal Learning via Joint Embedding of Unimodal Models [6.610033827647869]
実世界のシナリオでは、完全なマルチモーダルデータを一貫して取得することは重大な課題である。
これはしばしば、特定のモダリティのデータが欠落しているモダリティの問題につながる。
自己教師型共同埋め込み学習手法を用いて, パラメータ効率のよい未学習モデルの微調整を行う新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-17T14:44:25Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
実世界のアプリケーションでは,音声およびビデオデータに基づくマルチモーダル感情認識が重要である。
近年の手法は、強力なマルチモーダルエンコーダの事前学習に自己教師付き学習(SSL)の進歩を活用することに重点を置いている。
SSL-pre-trained disimodal encoders を用いて,この問題に対する異なる視点とマルチモーダル DFER の性能向上について検討する。
論文 参考訳(メタデータ) (2024-04-13T13:39:26Z) - Towards participatory multi-modeling for policy support across domains
and scales: a systematic procedure for integral multi-model design [0.0]
パンデミックのような複雑な課題に対する政策決定には、複数のドメインやスケールにまたがる複雑な影響を考慮する必要がある。
積分的マルチモデルは、既存の計算モデルから組み立てるか、概念的に全体を設計することができる。
本稿では、明確に定義されたドメイン知識の要求に基づいて、統合的なアプローチでマルチモデルを開発する手順を紹介する。
論文 参考訳(メタデータ) (2024-02-09T07:35:40Z) - An Interactive Agent Foundation Model [49.77861810045509]
本稿では,AIエージェントを訓練するための新しいマルチタスクエージェントトレーニングパラダイムを用いた対話型エージェント基礎モデルを提案する。
トレーニングパラダイムは、視覚マスク付きオートエンコーダ、言語モデリング、次世代の予測など、多様な事前学習戦略を統一する。
私たちは、ロボティクス、ゲームAI、ヘルスケアという3つの異なる領域でフレームワークのパフォーマンスを実演します。
論文 参考訳(メタデータ) (2024-02-08T18:58:02Z) - Bridging MDE and AI: A Systematic Review of Domain-Specific Languages and Model-Driven Practices in AI Software Systems Engineering [1.4853133497896698]
本研究の目的は、AIソフトウェアシステムのエンジニアリングを支援するために、DSLに依存した既存のモデル駆動アプローチを検討することである。
AIにMDEを使うことはまだ初期段階にあり、広く使われているツールやメソッドはひとつもない。
論文 参考訳(メタデータ) (2023-07-10T14:38:38Z) - Deep Multimodal Fusion for Generalizable Person Re-identification [15.250738959921872]
DMF(ディープ・マルチモーダル・フュージョン)は、個人再識別タスクの一般的なシナリオのためのディープ・マルチモーダル・フュージョン・ネットワークである。
事前学習段階における特徴表現学習を支援するために、リッチな意味知識が導入される。
実世界の分散アライメントのための事前訓練されたモデルを微調整するために、現実的なデータセットが採用されている。
論文 参考訳(メタデータ) (2022-11-02T07:42:48Z) - An attention model for the formation of collectives in real-world
domains [78.1526027174326]
本研究では,サステナブル開発目標に沿った実世界のアプリケーションにエージェントの集合を形成することの問題点を考察する。
本稿では,注目モデルと整数線形プログラムの新たな組み合わせに基づく集合形成のための一般的な手法を提案する。
論文 参考訳(メタデータ) (2022-04-30T09:15:36Z) - Quantitatively Assessing the Benefits of Model-driven Development in
Agent-based Modeling and Simulation [80.49040344355431]
本稿では,MDD とABMS プラットフォームの利用状況と開発ミスについて比較する。
その結果、MDD4ABMSはNetLogoと類似した設計品質のシミュレーションを開発するのに、より少ない労力を必要とすることがわかった。
論文 参考訳(メタデータ) (2020-06-15T23:29:04Z) - Towards Inheritable Models for Open-Set Domain Adaptation [56.930641754944915]
本稿では、将来、ソースデータセットが存在しない場合の適応を容易にするために、ソース学習モデルを用いた実用的なドメイン適応パラダイムを提案する。
本稿では,ソースデータがない場合でも,対象領域に対して最適なソースモデルの選択を可能にするために,継承可能性の定量化を目的とする手法を提案する。
論文 参考訳(メタデータ) (2020-04-09T07:16:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。