論文の概要: Non-contact Real time Eye Gaze Mapping System Based on Deep
Convolutional Neural Network
- arxiv url: http://arxiv.org/abs/2009.04645v1
- Date: Thu, 10 Sep 2020 02:37:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 03:53:04.972263
- Title: Non-contact Real time Eye Gaze Mapping System Based on Deep
Convolutional Neural Network
- Title(参考訳): 深層畳み込みニューラルネットワークを用いた非接触リアルタイム視線マッピングシステム
- Authors: Hoyeon Ahn
- Abstract要約: 実環境に適用可能な非接触視線マッピングシステムを提案する。
本稿では、GIST Gazeマッピングデータセットを紹介し、GIST Gazeマッピングを学習し、評価するために作成されたGIST Gazeマッピングデータセットについて紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human-Computer Interaction(HCI) is a field that studies interactions between
human users and computer systems. With the development of HCI, individuals or
groups of people can use various digital technologies to achieve the optimal
user experience. Human visual attention and visual intelligence are related to
cognitive science, psychology, and marketing informatics, and are used in
various applications of HCI. Gaze recognition is closely related to the HCI
field because it is meaningful in that it can enhance understanding of basic
human behavior. We can obtain reliable visual attention by the Gaze Matching
method that finds the area the user is staring at. In the previous methods, the
user wears a glasses-type device which in the form of glasses equipped with a
gaze tracking function and performs gaze tracking within a limited monitor
area. Also, the gaze estimation within a limited range is performed while the
user's posture is fixed. We overcome the physical limitations of the previous
method in this paper and propose a non-contact gaze mapping system applicable
in real-world environments. In addition, we introduce the GIST Gaze Mapping
(GGM) dataset, a Gaze mapping dataset created to learn and evaluate gaze
mapping.
- Abstract(参考訳): HCI(Human-Computer Interaction)は、ユーザとコンピュータシステムのインタラクションを研究する分野である。
HCIの開発により、個人や人々のグループは様々なデジタル技術を使って最適なユーザー体験を実現できる。
ヒトの視覚注意と視覚知性は認知科学、心理学、マーケティング情報学と関連しており、hciの様々な応用に用いられる。
視線認識は,人間の基本的な行動の理解を深めることができるため,hci分野と密接に関連している。
ユーザが見つめている領域を検出するGaze Matching法により,信頼性の高い視覚的注意力を得ることができる。
前者は、視線追跡機能を備えた眼鏡形式で、限られた監視領域内で視線追跡を行う眼鏡型装置を装着する。
また、ユーザの姿勢を固定しながら、限られた範囲内の視線推定を行う。
本稿では,従来の方法の物理的限界を克服し,実環境に適用可能な非接触視線マッピングシステムを提案する。
さらに, gist gaze mapping(ggm)データセットを導入し, 注視マッピングを学習し評価するための注視マッピングデータセットを提案する。
関連論文リスト
- Modeling User Preferences via Brain-Computer Interfacing [54.3727087164445]
我々はBrain-Computer Interface技術を用いてユーザの好みを推測し、その注意力は視覚的コンテンツと感情的体験との関連性に相関する。
我々はこれらを,情報検索,生成モデルのパーソナライズされたステアリング,感情経験のクラウドソーシング人口推定など,関連するアプリケーションにリンクする。
論文 参考訳(メタデータ) (2024-05-15T20:41:46Z) - Low-cost Geometry-based Eye Gaze Detection using Facial Landmarks
Generated through Deep Learning [0.0937465283958018]
我々は、新しい顔のランドマーク検出ニューラルネットワークを利用して、顔と虹彩の正確な安定な3Dランドマークを生成する。
本手法は,1.9度未満の角度誤差で視線を予測できることを実証する。
論文 参考訳(メタデータ) (2023-12-31T05:45:22Z) - Pose2Gaze: Eye-body Coordination during Daily Activities for Gaze Prediction from Full-body Poses [11.545286742778977]
まず、様々な人・物・人・人のインタラクション活動における眼・体の協調に関する包括的分析を報告する。
次に、畳み込みニューラルネットワークを用いて、頭部と全身のポーズから特徴を抽出する眼球運動調整モデルPose2Gazeを紹介する。
論文 参考訳(メタデータ) (2023-12-19T10:55:46Z) - CLERA: A Unified Model for Joint Cognitive Load and Eye Region Analysis
in the Wild [18.79132232751083]
目領域のダイナミックスをリアルタイムに分析することで、人間の視覚的注意の割り当てを監視し、精神状態を推定することができる。
共同学習フレームワークにおいて,正確なキーポイント検出と時間追跡を実現するCLERAを提案する。
また,共同瞳孔,眼開放性,ランドマークアノテーションを用いた30万人の顔の大規模データセットも導入した。
論文 参考訳(メタデータ) (2023-06-26T21:20:23Z) - Leveraging Human Selective Attention for Medical Image Analysis with
Limited Training Data [72.1187887376849]
選択的な注意機構は、注意散らしの存在を無視することで、認知システムがタスク関連視覚的手がかりに焦点を合わせるのに役立つ。
本稿では,医療画像解析タスクにおいて,小さなトレーニングデータを用いたガベージを利用したフレームワークを提案する。
本手法は腫瘍の3次元分割と2次元胸部X線分類において優れた性能を示す。
論文 参考訳(メタデータ) (2021-12-02T07:55:25Z) - Understanding Character Recognition using Visual Explanations Derived
from the Human Visual System and Deep Networks [6.734853055176694]
深層ニューラルネットワークの情報収集戦略における合同性,あるいはその欠如について検討する。
深層学習モデルは、人間が正しく分類された文字に対して固定した文字の類似した領域を考慮に入れた。
本稿では、視線追跡実験から得られた視覚的固定マップを、モデルが関連する文字領域に焦点を合わせるための監督入力として用いることを提案する。
論文 参考訳(メタデータ) (2021-08-10T10:09:37Z) - AEGIS: A real-time multimodal augmented reality computer vision based
system to assist facial expression recognition for individuals with autism
spectrum disorder [93.0013343535411]
本稿では,コンピュータビジョンと深部畳み込みニューラルネットワーク(CNN)を組み合わせたマルチモーダル拡張現実(AR)システムの開発について述べる。
提案システムはAIGISと呼ばれ,タブレット,スマートフォン,ビデオ会議システム,スマートグラスなど,さまざまなユーザデバイスにデプロイ可能な支援技術である。
我々は空間情報と時間情報の両方を活用して正確な表現予測を行い、それを対応する可視化に変換し、元のビデオフレーム上に描画する。
論文 参考訳(メタデータ) (2020-10-22T17:20:38Z) - What Can You Learn from Your Muscles? Learning Visual Representation
from Human Interactions [50.435861435121915]
視覚のみの表現よりも優れた表現を学べるかどうかを調べるために,人間のインタラクションとアテンション・キューを用いている。
実験の結果,我々の「音楽監督型」表現は,視覚のみの最先端手法であるMoCoよりも優れていた。
論文 参考訳(メタデータ) (2020-10-16T17:46:53Z) - Towards Hardware-Agnostic Gaze-Trackers [0.5512295869673146]
本稿では、制約付き視線追跡のための外観に基づく手法として、ディープニューラルネットワークアーキテクチャを提案する。
我々のシステムは、キャリブレーションやデバイス固有の微調整なしで、GazeCaptureデータセット上で1.8073cmの誤差を達成した。
論文 参考訳(メタデータ) (2020-10-11T00:53:57Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
本稿では,視覚・センサ・モダリティ(動画)における行動認識を強化するためのフレームワーク,Semantics-Aware Adaptive Knowledge Distillation Networks (SAKDN)を提案する。
SAKDNは複数のウェアラブルセンサーを教師のモダリティとして使用し、RGB動画を学生のモダリティとして使用している。
論文 参考訳(メタデータ) (2020-09-01T03:38:31Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。