Distributed Variable-Baseline Stereo SLAM from two UAVs
- URL: http://arxiv.org/abs/2009.04801v1
- Date: Thu, 10 Sep 2020 12:16:10 GMT
- Title: Distributed Variable-Baseline Stereo SLAM from two UAVs
- Authors: Marco Karrer and Margarita Chli
- Abstract summary: In this article, we employ two UAVs equipped with one monocular camera and one IMU each, to exploit their view overlap and relative distance measurements.
In order to control the glsuav agents autonomously, we propose a decentralized collaborative estimation scheme.
We demonstrate the effectiveness of the approach at high altitude flights of up to 160m, going significantly beyond the capabilities of state-of-the-art VIO methods.
- Score: 17.513645771137178
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: VIO has been widely used and researched to control and aid the automation of
navigation of robots especially in the absence of absolute position
measurements, such as GPS. However, when observable landmarks in the scene lie
far away from the robot's sensor suite, as it is the case at high altitude
flights, the fidelity of estimates and the observability of the metric scale
degrades greatly for these methods. Aiming to tackle this issue, in this
article, we employ two UAVs equipped with one monocular camera and one IMU
each, to exploit their view overlap and relative distance measurements between
them using UWB modules onboard to enable collaborative VIO. In particular, we
propose a novel, distributed fusion scheme enabling the formation of a virtual
stereo camera rig with adjustable baseline from the two UAVs. In order to
control the \gls{uav} agents autonomously, we propose a decentralized
collaborative estimation scheme, where each agent hold its own local map,
achieving an average pose estimation latency of 11ms, while ensuring
consistency of the agents' estimates via consensus based optimization.
Following a thorough evaluation on photorealistic simulations, we demonstrate
the effectiveness of the approach at high altitude flights of up to 160m, going
significantly beyond the capabilities of state-of-the-art VIO methods. Finally,
we show the advantage of actively adjusting the baseline on-the-fly over a
fixed, target baseline, reducing the error in our experiments by a factor of
two.
Related papers
- Long-Range Vision-Based UAV-assisted Localization for Unmanned Surface Vehicles [7.384309568198598]
Global positioning system (GPS) has become an indispensable navigation method for field operations with unmanned surface vehicles (USVs) in marine environments.
GPS may not always be available outdoors because it is vulnerable to natural interference and malicious jamming attacks.
We present a novel method that utilizes an Unmanned Aerial Vehicle (UAV) to assist in localizing USVs in restricted marine environments.
arXiv Detail & Related papers (2024-08-21T08:37:37Z) - Angle Robustness Unmanned Aerial Vehicle Navigation in GNSS-Denied
Scenarios [66.05091704671503]
We present a novel angle navigation paradigm to deal with flight deviation in point-to-point navigation tasks.
We also propose a model that includes the Adaptive Feature Enhance Module, Cross-knowledge Attention-guided Module and Robust Task-oriented Head Module.
arXiv Detail & Related papers (2024-02-04T08:41:20Z) - UAV Swarm-enabled Collaborative Secure Relay Communications with
Time-domain Colluding Eavesdropper [115.56455278813756]
Unmanned aerial vehicles (UAV) as aerial relays are practically appealing for assisting Internet Things (IoT) network.
In this work, we aim to utilize the UAV to assist secure communication between the UAV base station and terminal terminal devices.
arXiv Detail & Related papers (2023-10-03T11:47:01Z) - Fully Convolutional One-Stage 3D Object Detection on LiDAR Range Images [96.66271207089096]
FCOS-LiDAR is a fully convolutional one-stage 3D object detector for LiDAR point clouds of autonomous driving scenes.
We show that an RV-based 3D detector with standard 2D convolutions alone can achieve comparable performance to state-of-the-art BEV-based detectors.
arXiv Detail & Related papers (2022-05-27T05:42:16Z) - Vision-Based UAV Self-Positioning in Low-Altitude Urban Environments [20.69412701553767]
Unmanned Aerial Vehicles (UAVs) rely on satellite systems for stable positioning.
In such situations, vision-based techniques can serve as an alternative, ensuring the self-positioning capability of UAVs.
This paper presents a new dataset, DenseUAV, which is the first publicly available dataset designed for the UAV self-positioning task.
arXiv Detail & Related papers (2022-01-23T07:18:55Z) - Large-scale Autonomous Flight with Real-time Semantic SLAM under Dense
Forest Canopy [48.51396198176273]
We propose an integrated system that can perform large-scale autonomous flights and real-time semantic mapping in challenging under-canopy environments.
We detect and model tree trunks and ground planes from LiDAR data, which are associated across scans and used to constrain robot poses as well as tree trunk models.
A drift-compensation mechanism is designed to minimize the odometry drift using semantic SLAM outputs in real time, while maintaining planner optimality and controller stability.
arXiv Detail & Related papers (2021-09-14T07:24:53Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
We propose a framework for a team of UAVs to cooperatively explore and find a target in complex GPS-denied environments with obstacles.
The team of UAVs autonomously navigates, explores, detects, and finds the target in a cluttered environment with a known map.
Results indicate that the proposed multi-UAV system has improvements in terms of time-cost, the proportion of search area surveyed, as well as successful rates for search and rescue missions.
arXiv Detail & Related papers (2021-07-19T12:54:04Z) - Planetary UAV localization based on Multi-modal Registration with
Pre-existing Digital Terrain Model [0.5156484100374058]
We propose a multi-modal registration based SLAM algorithm, which estimates the location of a planet UAV using a nadir view camera on the UAV.
To overcome the scale and appearance difference between on-board UAV images and pre-installed digital terrain model, a theoretical model is proposed to prove that topographic features of UAV image and DEM can be correlated in frequency domain via cross power spectrum.
To test the robustness and effectiveness of the proposed localization algorithm, a new cross-source drone-based localization dataset for planetary exploration is proposed.
arXiv Detail & Related papers (2021-06-24T02:54:01Z) - Perceiving Traffic from Aerial Images [86.994032967469]
We propose an object detection method called Butterfly Detector that is tailored to detect objects in aerial images.
We evaluate our Butterfly Detector on two publicly available UAV datasets (UAVDT and VisDrone 2019) and show that it outperforms previous state-of-the-art methods while remaining real-time.
arXiv Detail & Related papers (2020-09-16T11:37:43Z) - Autonomous and cooperative design of the monitor positions for a team of
UAVs to maximize the quantity and quality of detected objects [0.5801044612920815]
This paper tackles the problem of positioning a swarm of UAVs inside a completely unknown terrain.
YOLOv3 and a system to identify duplicate objects of interest were employed to assign a single score to each UAVs' configuration.
A novel navigation algorithm, capable of optimizing the previously defined score, is proposed.
arXiv Detail & Related papers (2020-07-02T16:52:57Z) - Reinforcement Learning for UAV Autonomous Navigation, Mapping and Target
Detection [36.79380276028116]
We study a joint detection, mapping and navigation problem for a single unmanned aerial vehicle (UAV) equipped with a low complexity radar and flying in an unknown environment.
The goal is to optimize its trajectory with the purpose of maximizing the mapping accuracy and to avoid areas where measurements might not be sufficiently informative from the perspective of a target detection.
arXiv Detail & Related papers (2020-05-05T20:39:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.