A Scalable Decentralized Reinforcement Learning Framework for UAV Target Localization Using Recurrent PPO
- URL: http://arxiv.org/abs/2412.06231v1
- Date: Mon, 09 Dec 2024 06:08:23 GMT
- Title: A Scalable Decentralized Reinforcement Learning Framework for UAV Target Localization Using Recurrent PPO
- Authors: Leon Fernando, Billy Pik Lik Lau, Chau Yuen, U-Xuan Tan,
- Abstract summary: We develop a Recurrent PPO model for target localization in degraded environments.
We first developed a single-drone approach for target identification, followed by a decentralized two-drone model.
The single-drone model achieved an accuracy of 93%, while the two-drone model achieved an accuracy of 86%, with the latter requiring fewer average steps to locate the target.
- Score: 13.637231534128938
- License:
- Abstract: The rapid advancements in unmanned aerial vehicles (UAVs) have unlocked numerous applications, including environmental monitoring, disaster response, and agricultural surveying. Enhancing the collective behavior of multiple decentralized UAVs can significantly improve these applications through more efficient and coordinated operations. In this study, we explore a Recurrent PPO model for target localization in perceptually degraded environments like places without GNSS/GPS signals. We first developed a single-drone approach for target identification, followed by a decentralized two-drone model. Our approach can utilize two types of sensors on the UAVs, a detection sensor and a target signal sensor. The single-drone model achieved an accuracy of 93%, while the two-drone model achieved an accuracy of 86%, with the latter requiring fewer average steps to locate the target. This demonstrates the potential of our method in UAV swarms, offering efficient and effective localization of radiant targets in complex environmental conditions.
Related papers
- Robust Low-Cost Drone Detection and Classification in Low SNR Environments [0.9087641068861043]
We evaluate various convolutional neural networks (CNNs) for their ability to detect and classify drones.
We demonstrate a low-cost drone detection system using a standard computer, software-defined radio (SDR) and antenna.
arXiv Detail & Related papers (2024-06-26T12:50:55Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - Anti-Jamming Path Planning Using GCN for Multi-UAV [0.0]
The effectiveness of UAV swarms can be severely compromised by jamming technology.
A novel approach, where UAV swarms leverage collective intelligence to predict jamming areas, is proposed.
A multi-agent control algorithm is then employed to disperse the UAV swarm, avoid jamming, and regroup upon reaching the target.
arXiv Detail & Related papers (2024-03-13T07:28:05Z) - UAV Swarm-enabled Collaborative Secure Relay Communications with
Time-domain Colluding Eavesdropper [115.56455278813756]
Unmanned aerial vehicles (UAV) as aerial relays are practically appealing for assisting Internet Things (IoT) network.
In this work, we aim to utilize the UAV to assist secure communication between the UAV base station and terminal terminal devices.
arXiv Detail & Related papers (2023-10-03T11:47:01Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
Federated edge learning (FEEL) enables privacy-preserving model training through periodic communication between edge devices and the server.
Unmanned Aerial Vehicle (UAV)mounted edge devices are particularly advantageous for FEEL due to their flexibility and mobility in efficient data collection.
arXiv Detail & Related papers (2023-06-05T16:01:33Z) - Reinforcement Learning for Agile Active Target Sensing with a UAV [10.070339628481445]
This paper develops a deep reinforcement learning approach to plan informative trajectories.
It exploits its current belief of the target states and incorporates inaccurate sensor models for high-fidelity classification.
A unique characteristic of our approach is that it is robust to varying amounts of deviations from the true target distribution.
arXiv Detail & Related papers (2022-12-16T01:01:17Z) - Optimization for Master-UAV-powered Auxiliary-Aerial-IRS-assisted IoT
Networks: An Option-based Multi-agent Hierarchical Deep Reinforcement
Learning Approach [56.84948632954274]
This paper investigates a master unmanned aerial vehicle (MUAV)-powered Internet of Things (IoT) network.
We propose using a rechargeable auxiliary UAV (AUAV) equipped with an intelligent reflecting surface (IRS) to enhance the communication signals from the MUAV.
Under the proposed model, we investigate the optimal collaboration strategy of these energy-limited UAVs to maximize the accumulated throughput of the IoT network.
arXiv Detail & Related papers (2021-12-20T15:45:28Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
The visual inspection of aerial drone footage is an integral part of land search and rescue (SAR) operations today.
We propose a novel deep learning algorithm to automate this aerial person detection (APD) task.
We present the novel Aerial Inspection RetinaNet (AIR) algorithm as the combination of these contributions.
arXiv Detail & Related papers (2021-11-17T21:48:31Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
We propose a framework for a team of UAVs to cooperatively explore and find a target in complex GPS-denied environments with obstacles.
The team of UAVs autonomously navigates, explores, detects, and finds the target in a cluttered environment with a known map.
Results indicate that the proposed multi-UAV system has improvements in terms of time-cost, the proportion of search area surveyed, as well as successful rates for search and rescue missions.
arXiv Detail & Related papers (2021-07-19T12:54:04Z) - A Vision Based Deep Reinforcement Learning Algorithm for UAV Obstacle
Avoidance [1.2693545159861856]
We present two techniques for improving exploration for UAV obstacle avoidance.
The first is a convergence-based approach that uses convergence error to iterate through unexplored actions and temporal threshold to balance exploration and exploitation.
The second is a guidance-based approach which uses a Gaussian mixture distribution to compare previously seen states to a predicted next state in order to select the next action.
arXiv Detail & Related papers (2021-03-11T01:15:26Z) - Reinforcement Learning for UAV Autonomous Navigation, Mapping and Target
Detection [36.79380276028116]
We study a joint detection, mapping and navigation problem for a single unmanned aerial vehicle (UAV) equipped with a low complexity radar and flying in an unknown environment.
The goal is to optimize its trajectory with the purpose of maximizing the mapping accuracy and to avoid areas where measurements might not be sufficiently informative from the perspective of a target detection.
arXiv Detail & Related papers (2020-05-05T20:39:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.