論文の概要: Understanding Coarsening for Embedding Large-Scale Graphs
- arxiv url: http://arxiv.org/abs/2009.04925v1
- Date: Thu, 10 Sep 2020 15:06:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 04:12:39.831561
- Title: Understanding Coarsening for Embedding Large-Scale Graphs
- Title(参考訳): 大規模グラフ埋め込みのための粗さの理解
- Authors: Taha Atahan Akyildiz, Amro Alabsi Aljundi, Kamer Kaya
- Abstract要約: 機械学習(ML)アルゴリズムによるグラフの適切な解析は、研究や産業の多くの分野において、より深い洞察をもたらす可能性がある。
グラフデータの不規則構造は、グラフ上でMLタスクを実行するための障害を構成する。
本研究では, 粗大化品質が埋込み性能に及ぼす影響を, 速度と精度の両方で解析する。
- 参考スコア(独自算出の注目度): 3.6739949215165164
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A significant portion of the data today, e.g, social networks, web
connections, etc., can be modeled by graphs. A proper analysis of graphs with
Machine Learning (ML) algorithms has the potential to yield far-reaching
insights into many areas of research and industry. However, the irregular
structure of graph data constitutes an obstacle for running ML tasks on graphs
such as link prediction, node classification, and anomaly detection. Graph
embedding is a compute-intensive process of representing graphs as a set of
vectors in a d-dimensional space, which in turn makes it amenable to ML tasks.
Many approaches have been proposed in the literature to improve the performance
of graph embedding, e.g., using distributed algorithms, accelerators, and
pre-processing techniques. Graph coarsening, which can be considered a
pre-processing step, is a structural approximation of a given, large graph with
a smaller one. As the literature suggests, the cost of embedding significantly
decreases when coarsening is employed. In this work, we thoroughly analyze the
impact of the coarsening quality on the embedding performance both in terms of
speed and accuracy. Our experiments with a state-of-the-art, fast graph
embedding tool show that there is an interplay between the coarsening decisions
taken and the embedding quality.
- Abstract(参考訳): 現在のデータの大部分は、ソーシャルネットワークやweb接続など、グラフでモデル化することができます。
機械学習(ml)アルゴリズムによるグラフの適切な分析は、多くの研究や産業分野に広範囲にわたる洞察をもたらす可能性がある。
しかし、グラフデータの不規則構造は、リンク予測、ノード分類、異常検出などのグラフ上でMLタスクを実行する障害を構成する。
グラフ埋め込みは、グラフをd次元空間内のベクトルの集合として表現する計算集約的なプロセスであり、その結果、MLタスクに導出可能である。
分散アルゴリズム、加速器、前処理技術の使用など、グラフ埋め込みのパフォーマンスを改善するための多くのアプローチが文献に提案されている。
グラフ粗化(Graph coarsening)は、前処理ステップと見なすことができ、より小さいグラフを持つ与えられた大きなグラフの構造近似である。
文献が示すように、粗粒化を施すと埋込コストが大幅に減少する。
本研究では, 粗大化品質が埋込み性能に与える影響を, 速度と精度の両方で徹底的に解析する。
最先端の高速グラフ埋め込みツールを用いた実験では,粗い決定と埋め込み品質の間には相互作用があることが示されている。
関連論文リスト
- Bures-Wasserstein Means of Graphs [60.42414991820453]
本研究では,スムーズなグラフ信号分布の空間への埋め込みを通じて,グラフ平均を定義する新しいフレームワークを提案する。
この埋め込み空間において平均を求めることにより、構造情報を保存する平均グラフを復元することができる。
我々は,新しいグラフの意味の存在と特異性を確立し,それを計算するための反復アルゴリズムを提供する。
論文 参考訳(メタデータ) (2023-05-31T11:04:53Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - Synthetic Graph Generation to Benchmark Graph Learning [7.914804101579097]
グラフ学習アルゴリズムは多くのグラフ解析タスクで最先端のパフォーマンスを達成した。
1つの理由は、グラフ学習アルゴリズムのパフォーマンスをベンチマークするために実際に使用されるデータセットが極めて少ないためである。
本稿では,合成グラフの生成と,制御シナリオにおけるグラフ学習アルゴリズムの挙動について検討する。
論文 参考訳(メタデータ) (2022-04-04T10:48:32Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
グラフコントラスト学習(GCL)は、手作業によるアノテーションの監督なしに、グラフ表現学習(GRL)において有望な性能を示した。
本稿では,この課題に対処するため,グラフココというグラフ補完型コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-24T02:58:36Z) - Scaling R-GCN Training with Graph Summarization [71.06855946732296]
リレーショナルグラフ畳み込みネットワーク(R-GCN)のトレーニングは、グラフのサイズに合わない。
本研究では,グラフの要約手法を用いてグラフを圧縮する実験を行った。
AIFB, MUTAG, AMデータセットについて妥当な結果を得た。
論文 参考訳(メタデータ) (2022-03-05T00:28:43Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
まず,グラフデータ拡張のための分類法を提案し,その拡張情報モダリティに基づいて関連研究を分類し,構造化されたレビューを提供する。
DGLにおける2つの課題(すなわち、最適グラフ学習と低リソースグラフ学習)に焦点を当て、グラフデータ拡張に基づく既存の学習パラダイムについて議論し、レビューする。
論文 参考訳(メタデータ) (2022-02-16T18:30:33Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
グラフ組み込み数ショット学習に関する包括的な研究を紹介します。
本稿では,ラベル間のグラフ情報の組み込みによる影響をより深く理解できるグラフ正規化手法を提案する。
提案手法は,Mini-ImageNetで最大2%,ImageNet-FSで6.7%の性能向上を実現する。
論文 参考訳(メタデータ) (2021-02-14T05:28:13Z) - Graph Coarsening with Neural Networks [8.407217618651536]
本稿では、粗いアルゴリズムの品質を測定するためのフレームワークを提案し、目標に応じて、粗いグラフ上のLaplace演算子を慎重に選択する必要があることを示す。
粗いグラフに対する現在のエッジウェイト選択が準最適である可能性が示唆され、グラフニューラルネットワークを用いて重み付けマップをパラメータ化し、教師なし方法で粗い品質を改善するよう訓練する。
論文 参考訳(メタデータ) (2021-02-02T06:50:07Z) - Understanding graph embedding methods and their applications [1.14219428942199]
グラフ埋め込み技術は、高次元スパースグラフを低次元密度連続ベクトル空間に変換するのに有効である。
生成した非線形かつ高情報性の高いグラフ埋め込みは、異なる下流グラフ解析タスクに便利に利用することができる。
論文 参考訳(メタデータ) (2020-12-15T00:30:22Z) - Graph topology inference benchmarks for machine learning [16.857405938139525]
本稿では,グラフ推論手法の相対的メリットと限界を明らかにするために,いくつかのベンチマークを導入する。
我々はまた、文学において最も顕著な技法のいくつかを対比している。
論文 参考訳(メタデータ) (2020-07-16T09:40:32Z) - Just SLaQ When You Approximate: Accurate Spectral Distances for
Web-Scale Graphs [6.72542623686684]
本研究では,数十億のノードとエッジを持つグラフ間のスペクトル距離を計算するための,効率的かつ効率的な近似手法であるSLaQを提案する。
SLaQは既存の手法よりも優れており、近似精度は数桁向上することが多い。
論文 参考訳(メタデータ) (2020-03-03T01:25:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。