論文の概要: Graph topology inference benchmarks for machine learning
- arxiv url: http://arxiv.org/abs/2007.08216v1
- Date: Thu, 16 Jul 2020 09:40:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-09 22:14:10.600049
- Title: Graph topology inference benchmarks for machine learning
- Title(参考訳): 機械学習のためのグラフトポロジー推論ベンチマーク
- Authors: Carlos Lassance and Vincent Gripon and Gonzalo Mateos
- Abstract要約: 本稿では,グラフ推論手法の相対的メリットと限界を明らかにするために,いくつかのベンチマークを導入する。
我々はまた、文学において最も顕著な技法のいくつかを対比している。
- 参考スコア(独自算出の注目度): 16.857405938139525
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graphs are nowadays ubiquitous in the fields of signal processing and machine
learning. As a tool used to express relationships between objects, graphs can
be deployed to various ends: I) clustering of vertices, II) semi-supervised
classification of vertices, III) supervised classification of graph signals,
and IV) denoising of graph signals. However, in many practical cases graphs are
not explicitly available and must therefore be inferred from data. Validation
is a challenging endeavor that naturally depends on the downstream task for
which the graph is learnt. Accordingly, it has often been difficult to compare
the efficacy of different algorithms. In this work, we introduce several
ease-to-use and publicly released benchmarks specifically designed to reveal
the relative merits and limitations of graph inference methods. We also
contrast some of the most prominent techniques in the literature.
- Abstract(参考訳): グラフは現在、信号処理と機械学習の分野で広く使われている。
オブジェクト間の関係を表現するツールとして、グラフは様々な端に展開することができる: (I) 頂点のクラスタリング、 (II) 頂点の半教師付き分類、 (III) グラフ信号の教師付き分類、 (IV) グラフ信号の復調。
しかし、多くの場合、グラフは明示的に利用できないため、データから推測する必要がある。
検証は、グラフが学習される下流のタスクに自然に依存する、難しい取り組みです。
したがって、異なるアルゴリズムの有効性を比較することはしばしば困難である。
本研究では,グラフ推論手法の相対的メリットと限界を明らかにするために,いくつかの簡易かつ公開なベンチマークを紹介する。
我々はまた、文学における最も顕著な技法のいくつかを対比する。
関連論文リスト
- State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - Demystifying Graph Convolution with a Simple Concatenation [6.542119695695405]
グラフトポロジ、ノード特徴、ラベル間の重なり合う情報を定量化する。
グラフの畳み込みは、グラフの畳み込みに代わる単純だが柔軟な代替手段であることを示す。
論文 参考訳(メタデータ) (2022-07-18T16:39:33Z) - Similarity-aware Positive Instance Sampling for Graph Contrastive
Pre-training [82.68805025636165]
トレーニングセット内の既存グラフから直接正のグラフインスタンスを選択することを提案する。
私たちの選択は、特定のドメイン固有のペアワイズ類似度測定に基づいています。
さらに,ノードを動的にマスキングしてグラフ上に均等に分配する適応ノードレベルの事前学習手法を開発した。
論文 参考訳(メタデータ) (2022-06-23T20:12:51Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
自己教師付きグラフ類似性学習のためのコントラストグラフマッチングネットワーク(CGMN)を提案する。
我々は,効率的なノード表現学習のために,クロスビューインタラクションとクロスグラフインタラクションという2つの戦略を用いる。
我々はノード表現をグラフ類似性計算のためのプール演算によりグラフレベル表現に変換する。
論文 参考訳(メタデータ) (2022-05-30T13:20:26Z) - Synthetic Graph Generation to Benchmark Graph Learning [7.914804101579097]
グラフ学習アルゴリズムは多くのグラフ解析タスクで最先端のパフォーマンスを達成した。
1つの理由は、グラフ学習アルゴリズムのパフォーマンスをベンチマークするために実際に使用されるデータセットが極めて少ないためである。
本稿では,合成グラフの生成と,制御シナリオにおけるグラフ学習アルゴリズムの挙動について検討する。
論文 参考訳(メタデータ) (2022-04-04T10:48:32Z) - Graphon based Clustering and Testing of Networks: Algorithms and Theory [11.3700474413248]
ネットワークに価値のあるデータは、幅広いアプリケーションで遭遇し、学習の課題を提起する。
本稿では,2つのクラスタリングアルゴリズムについて述べる。
さらに、グラフ2サンプルテスト問題に対する提案した距離の適用性について検討する。
論文 参考訳(メタデータ) (2021-10-06T13:14:44Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
本稿では,グラフマッチングを向上するための信頼度の高いグラフ構造を探索するために,GLAMという共用電子グラフ学習とマッチングネットワークを提案する。
提案手法は,3つの人気ビジュアルマッチングベンチマーク (Pascal VOC, Willow Object, SPair-71k) で評価される。
すべてのベンチマークにおいて、従来の最先端のグラフマッチング手法よりも大きなマージンを達成している。
論文 参考訳(メタデータ) (2021-09-01T08:24:02Z) - Multi-Level Graph Contrastive Learning [38.022118893733804]
本稿では,グラフの空間ビューを対比することで,グラフデータの堅牢な表現を学習するためのマルチレベルグラフコントラスト学習(MLGCL)フレームワークを提案する。
元のグラフは1次近似構造であり、不確実性や誤りを含むが、符号化機能によって生成された$k$NNグラフは高次近接性を保持する。
MLGCLは、7つのデータセット上の既存の最先端グラフ表現学習法と比較して有望な結果が得られることを示す。
論文 参考訳(メタデータ) (2021-07-06T14:24:43Z) - Learnable Graph Matching: Incorporating Graph Partitioning with Deep
Feature Learning for Multiple Object Tracking [58.30147362745852]
フレーム間のデータアソシエーションは、Multiple Object Tracking(MOT)タスクの中核にある。
既存の手法は、主にトラックレットとフレーム内検出の間のコンテキスト情報を無視する。
そこで本研究では,学習可能なグラフマッチング手法を提案する。
論文 参考訳(メタデータ) (2021-03-30T08:58:45Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Understanding Coarsening for Embedding Large-Scale Graphs [3.6739949215165164]
機械学習(ML)アルゴリズムによるグラフの適切な解析は、研究や産業の多くの分野において、より深い洞察をもたらす可能性がある。
グラフデータの不規則構造は、グラフ上でMLタスクを実行するための障害を構成する。
本研究では, 粗大化品質が埋込み性能に及ぼす影響を, 速度と精度の両方で解析する。
論文 参考訳(メタデータ) (2020-09-10T15:06:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。