An Efficient Quantitative Approach for Optimizing Convolutional Neural
Networks
- URL: http://arxiv.org/abs/2009.05236v4
- Date: Wed, 15 Sep 2021 16:59:45 GMT
- Title: An Efficient Quantitative Approach for Optimizing Convolutional Neural
Networks
- Authors: Yuke Wang, Boyuan Feng, Xueqiao Peng, Yufei Ding
- Abstract summary: We propose 3D-Receptive Field (3DRF) to estimate the quality of a CNN architecture and guide the search process of designs.
Our models can achieve up to 5.47% accuracy improvement and up to 65.38% parameters, compared with state-of-the-art CNN structures like MobileNet and ResNet.
- Score: 16.072287925319806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the increasing popularity of deep learning, Convolutional Neural
Networks (CNNs) have been widely applied in various domains, such as image
classification and object detection, and achieve stunning success in terms of
their high accuracy over the traditional statistical methods. To exploit the
potential of CNN models, a huge amount of research and industry efforts have
been devoted to optimizing CNNs. Among these endeavors, CNN architecture design
has attracted tremendous attention because of its great potential of improving
model accuracy or reducing model complexity. However, existing work either
introduces repeated training overhead in the search process or lacks an
interpretable metric to guide the design. To clear these hurdles, we propose
3D-Receptive Field (3DRF), an explainable and easy-to-compute metric, to
estimate the quality of a CNN architecture and guide the search process of
designs. To validate the effectiveness of 3DRF, we build a static optimizer to
improve the CNN architectures at both the stage level and the kernel level. Our
optimizer not only provides a clear and reproducible procedure but also
mitigates unnecessary training efforts in the architecture search process.
Extensive experiments and studies show that the models generated by our
optimizer can achieve up to 5.47% accuracy improvement and up to 65.38%
parameters deduction, compared with state-of-the-art CNN structures like
MobileNet and ResNet.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Optimizing Convolutional Neural Network Architecture [0.0]
Convolutional Neural Networks (CNN) are widely used to face challenging tasks like speech recognition, natural language processing or computer vision.
We propose Optimizing Convolutional Neural Network Architecture (OCNNA), a novel CNN optimization and construction method based on pruning and knowledge distillation.
Our method has been compared with more than 20 convolutional neural network simplification algorithms obtaining outstanding results.
arXiv Detail & Related papers (2023-12-17T12:23:11Z) - Transferability of Convolutional Neural Networks in Stationary Learning
Tasks [96.00428692404354]
We introduce a novel framework for efficient training of convolutional neural networks (CNNs) for large-scale spatial problems.
We show that a CNN trained on small windows of such signals achieves a nearly performance on much larger windows without retraining.
Our results show that the CNN is able to tackle problems with many hundreds of agents after being trained with fewer than ten.
arXiv Detail & Related papers (2023-07-21T13:51:45Z) - An Efficient Evolutionary Deep Learning Framework Based on Multi-source
Transfer Learning to Evolve Deep Convolutional Neural Networks [8.40112153818812]
Convolutional neural networks (CNNs) have constantly achieved better performance over years by introducing more complex topology, and enlarging the capacity towards deeper and wider CNNs.
The computational cost is still the bottleneck of automatically designing CNNs.
In this paper, inspired by transfer learning, a new evolutionary computation based framework is proposed to efficiently evolve CNNs.
arXiv Detail & Related papers (2022-12-07T20:22:58Z) - Receptive Field Refinement for Convolutional Neural Networks Reliably
Improves Predictive Performance [1.52292571922932]
We present a new approach to receptive field analysis that can yield these types of theoretical and empirical performance gains.
Our approach is able to improve ImageNet1K performance across a wide range of well-known, state-of-the-art (SOTA) model classes.
arXiv Detail & Related papers (2022-11-26T05:27:44Z) - Efficient Neural Net Approaches in Metal Casting Defect Detection [0.0]
This research proposes a lightweight architecture that is efficient in terms of accuracy and inference time.
Our results indicate that a custom model of 590K parameters with depth-wise separable convolutions outperformed pretrained architectures.
arXiv Detail & Related papers (2022-08-08T13:54:36Z) - Towards Enabling Dynamic Convolution Neural Network Inference for Edge
Intelligence [0.0]
Recent advances in edge intelligence require CNN inference on edge network to increase throughput and reduce latency.
To provide flexibility, dynamic parameter allocation to different mobile devices is required to implement either a predefined or defined on-the-fly CNN architecture.
We propose a library-based approach to design scalable and dynamic distributed CNN inference on the fly.
arXiv Detail & Related papers (2022-02-18T22:33:42Z) - Neural Architecture Dilation for Adversarial Robustness [56.18555072877193]
A shortcoming of convolutional neural networks is that they are vulnerable to adversarial attacks.
This paper aims to improve the adversarial robustness of the backbone CNNs that have a satisfactory accuracy.
Under a minimal computational overhead, a dilation architecture is expected to be friendly with the standard performance of the backbone CNN.
arXiv Detail & Related papers (2021-08-16T03:58:00Z) - Greedy Network Enlarging [53.319011626986004]
We propose a greedy network enlarging method based on the reallocation of computations.
With step-by-step modifying the computations on different stages, the enlarged network will be equipped with optimal allocation and utilization of MACs.
With application of our method on GhostNet, we achieve state-of-the-art 80.9% and 84.3% ImageNet top-1 accuracies.
arXiv Detail & Related papers (2021-07-31T08:36:30Z) - FBNetV3: Joint Architecture-Recipe Search using Predictor Pretraining [65.39532971991778]
We present an accuracy predictor that scores architecture and training recipes jointly, guiding both sample selection and ranking.
We run fast evolutionary searches in just CPU minutes to generate architecture-recipe pairs for a variety of resource constraints.
FBNetV3 makes up a family of state-of-the-art compact neural networks that outperform both automatically and manually-designed competitors.
arXiv Detail & Related papers (2020-06-03T05:20:21Z) - Curriculum By Smoothing [52.08553521577014]
Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation.
We propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters.
As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data.
arXiv Detail & Related papers (2020-03-03T07:27:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.