A Density-Aware PointRCNN for 3D Object Detection in Point Clouds
- URL: http://arxiv.org/abs/2009.05307v2
- Date: Fri, 8 Jan 2021 04:33:52 GMT
- Title: A Density-Aware PointRCNN for 3D Object Detection in Point Clouds
- Authors: Jie Li, Yu Hu
- Abstract summary: We present an improved version of PointRCNN for 3D object detection.
A multi-branch backbone network is adopted to handle the non-uniform density of point clouds.
- Score: 12.077854878153513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an improved version of PointRCNN for 3D object detection, in which
a multi-branch backbone network is adopted to handle the non-uniform density of
point clouds. An uncertainty-based sampling policy is proposed to deal with the
distribution differences of different point clouds. The new model can achieve
about 0.8 AP higher performance than the baseline PointRCNN on KITTI val set.
In addition, a simplified model using a single scale grouping for each
set-abstraction layer can achieve competitive performance with less
computational cost.
Related papers
- Test-Time Adaptation in Point Clouds: Leveraging Sampling Variation with Weight Averaging [17.74824534094739]
Test-Time Adaptation (TTA) addresses distribution shifts during testing by adapting a pretrained model without access to source data.
We propose a novel TTA approach for 3D point cloud classification, combining sampling variation with weight averaging.
arXiv Detail & Related papers (2024-11-02T02:59:25Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
We propose a novel pre-training method called Point cloud Diffusion pre-training (PointDif)
PointDif achieves substantial improvement across various real-world datasets for diverse downstream tasks such as classification, segmentation and detection.
arXiv Detail & Related papers (2023-11-25T08:10:05Z) - PointPatchMix: Point Cloud Mixing with Patch Scoring [58.58535918705736]
We propose PointPatchMix, which mixes point clouds at the patch level and generates content-based targets for mixed point clouds.
Our approach preserves local features at the patch level, while the patch scoring module assigns targets based on the content-based significance score from a pre-trained teacher model.
With Point-MAE as our baseline, our model surpasses previous methods by a significant margin, achieving 86.3% accuracy on ScanObjectNN and 94.1% accuracy on ModelNet40.
arXiv Detail & Related papers (2023-03-12T14:49:42Z) - 3D Cascade RCNN: High Quality Object Detection in Point Clouds [122.42455210196262]
We present 3D Cascade RCNN, which allocates multiple detectors based on the voxelized point clouds in a cascade paradigm.
We validate the superiority of our proposed 3D Cascade RCNN, when comparing to state-of-the-art 3D object detection techniques.
arXiv Detail & Related papers (2022-11-15T15:58:36Z) - A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud
Completion [69.32451612060214]
Real-scanned 3D point clouds are often incomplete, and it is important to recover complete point clouds for downstream applications.
Most existing point cloud completion methods use Chamfer Distance (CD) loss for training.
We propose a novel Point Diffusion-Refinement (PDR) paradigm for point cloud completion.
arXiv Detail & Related papers (2021-12-07T06:59:06Z) - CpT: Convolutional Point Transformer for 3D Point Cloud Processing [10.389972581905]
We present CpT: Convolutional point Transformer - a novel deep learning architecture for dealing with the unstructured nature of 3D point cloud data.
CpT is an improvement over existing attention-based Convolutions Neural Networks as well as previous 3D point cloud processing transformers.
Our model can serve as an effective backbone for various point cloud processing tasks when compared to the existing state-of-the-art approaches.
arXiv Detail & Related papers (2021-11-21T17:45:55Z) - Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling [52.464516118826765]
We introduce RandLA-Net, an efficient and lightweight neural architecture to infer per-point semantics for large-scale point clouds.
The key to our approach is to use random point sampling instead of more complex point selection approaches.
Our RandLA-Net can process 1 million points in a single pass up to 200x faster than existing approaches.
arXiv Detail & Related papers (2021-07-06T05:08:34Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDAR-based 3D object detection is an important task for autonomous driving.
Current approaches suffer from sparse and partial point clouds of distant and occluded objects.
In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions.
arXiv Detail & Related papers (2020-12-18T18:06:43Z) - ODFNet: Using orientation distribution functions to characterize 3D
point clouds [0.0]
We leverage on point orientation distributions around a point in order to obtain an expressive local neighborhood representation for point clouds.
New ODFNet model achieves state-of-the-art accuracy for object classification on ModelNet40 and ScanObjectNN datasets.
arXiv Detail & Related papers (2020-12-08T19:54:20Z) - Spherical Interpolated Convolutional Network with Distance-Feature
Density for 3D Semantic Segmentation of Point Clouds [24.85151376535356]
Spherical interpolated convolution operator is proposed to replace the traditional grid-shaped 3D convolution operator.
The proposed method achieves good performance on the ScanNet dataset and Paris-Lille-3D dataset.
arXiv Detail & Related papers (2020-11-27T15:35:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.