Quantum Dynamics Generated by Long-Range Interactions for Lattice
Fermions and Quantum Spins
- URL: http://arxiv.org/abs/2009.05320v1
- Date: Fri, 11 Sep 2020 10:06:33 GMT
- Title: Quantum Dynamics Generated by Long-Range Interactions for Lattice
Fermions and Quantum Spins
- Authors: J.-B. Bru and W. de Siqueira Pedra
- Abstract summary: We study the macroscopic dynamics of fermion and quantum-spin systems with long-range, or mean-field, interactions.
The results are far beyond previous ones and required the development of a suitable mathematical framework.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the macroscopic dynamics of fermion and quantum-spin systems with
long-range, or mean-field, interactions, which turns out to be equivalent to an
intricate combination of classical and short-range quantum dynamics. In this
paper we focus on the \emph{quantum} part of the long-range macroscopic
dynamics. The classical part is studied in a companion paper. Altogether, the
results obtained are far beyond previous ones and required the development of a
suitable mathematical framework. The entanglement of classical and quantum
worlds is noteworthy, opening new theoretical perspectives, and is shown here
to be a consequence of the highly non-local character of long-range, or
mean-field, interactions.
Related papers
- Out-of-equilibrium dynamics of quantum many-body systems with long-range interactions [0.0]
Experimental progress in atomic, molecular, and optical platforms has stimulated strong and broad interest in quantum coherent dynamics.
This Report presents a systematic and organic review of recent advances in the field.
arXiv Detail & Related papers (2023-07-10T18:00:16Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Time and Evolution in Quantum and Classical Cosmology [68.8204255655161]
We show that it is neither necessary nor sufficient for the Poisson bracket between the time variable and the super-Hamiltonian to be equal to unity in all of the phase space.
We also discuss the question of switching between different internal times as well as the Montevideo interpretation of quantum theory.
arXiv Detail & Related papers (2021-07-02T09:17:55Z) - Entanglement of Classical and Quantum Short-Range Dynamics in Mean-Field
Systems [0.0]
We show the emergence of classical dynamics for very general quantum lattice systems with mean-field interactions.
This leads to a theoretical framework in which the classical and quantum worlds are entangled.
arXiv Detail & Related papers (2021-03-11T15:23:59Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Objective trajectories in hybrid classical-quantum dynamics [0.0]
We introduce several toy models in which to study hybrid classical-quantum evolution.
We present an unravelling approach to calculate the dynamics, and provide code to numerically simulate it.
arXiv Detail & Related papers (2020-11-11T19:00:34Z) - Classical Dynamics Generated by Long-Range Interactions for Lattice
Fermions and Quantum Spins [0.0]
We study the macroscopic dynamical properties of fermion and quantum-spin systems with long-range, or mean-field, interactions.
As is usual, the classical dynamics is driven by Liouville's equation.
arXiv Detail & Related papers (2020-09-11T10:00:12Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.