Light-matter interactions in synthetic magnetic fields: Landau-photon
polaritons
- URL: http://arxiv.org/abs/2009.05952v2
- Date: Fri, 12 Mar 2021 08:12:13 GMT
- Title: Light-matter interactions in synthetic magnetic fields: Landau-photon
polaritons
- Authors: Daniele De Bernardis, Ze-Pei Cian, Iacopo Carusotto, Mohammad Hafezi,
Peter Rabl
- Abstract summary: We study light-matter interactions in two dimensional photonic systems in the presence of a spatially homogeneous synthetic magnetic field for light.
We consider one or more two-level emitters located in the bulk region of the lattice, where for increasing magnetic field the photonic modes change from extended plane waves to circulating Landau levels.
This change has a drastic effect on the resulting emitter-field dynamics, which becomes intrinsically non-Markovian and chiral, leading to the formation of strongly coupled Landau-photon polaritons.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study light-matter interactions in two dimensional photonic systems in the
presence of a spatially homogeneous synthetic magnetic field for light.
Specifically, we consider one or more two-level emitters located in the bulk
region of the lattice, where for increasing magnetic field the photonic modes
change from extended plane waves to circulating Landau levels. This change has
a drastic effect on the resulting emitter-field dynamics, which becomes
intrinsically non-Markovian and chiral, leading to the formation of strongly
coupled Landau-photon polaritons. The peculiar dynamical and spectral
properties of these quasi-particles can be probed with state-of-the-art
photonic lattices in the optical and the microwave domain and may find various
applications for the quantum simulation of strongly interacting topological
models.
Related papers
- Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Plasmon mediated coherent population oscillations in molecular
aggregates [2.2723634099641004]
coherent coupling of quantum emitters to vacuum fluctuations of the light field offers opportunities for manipulating the optical and transport properties of nanomaterials.
Here, we use ultrafast two-dimensional electronic spectroscopy to probe the quantum dynamics of J-aggregate excitons collectively coupled to the spatially structured plasmonic fields of a gold nanoslit array.
arXiv Detail & Related papers (2023-07-27T08:57:46Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Perspective on real-space nanophotonic field manipulation using
non-perturbative light-matter coupling [0.0]
We develop a theory describing multi-mode light-matter coupling in systems of reduced dimensionality.
We show how the interference between different photonic resonances can modify the real-space shape of the electromagnetic field associated with each polariton mode.
arXiv Detail & Related papers (2022-07-24T08:29:50Z) - Observation of oscillatory Raman gain associated with two-photon Rabi
oscillations of nanofiber-coupled atoms [0.0]
Quantum emitters with a $Lambda$-type level structure enable numerous protocols and applications in quantum science and technology.
Here, we drive two-photon Rabi oscillations between the two ground states of cesium atoms.
We study the dependence of the two-photon Rabi frequency on the system parameters and observe Autler-Townes splitting in the probe transmission spectrum.
arXiv Detail & Related papers (2022-07-01T13:59:26Z) - Formation of Matter-Wave Polaritons in an Optical Lattice [0.0]
polariton is a quasiparticle formed by strong coupling of a photon to a matter excitation.
We develop an ultracold-atom analogue of an exciton-polariton system in which interacting polaritonic phases can be studied.
Our work opens up novel possibilities for studies of polaritonic quantum matter.
arXiv Detail & Related papers (2021-09-06T04:46:31Z) - Photon-mediated interactions near a Dirac photonic crystal slab [68.8204255655161]
We develop a theory of dipole radiation near photonic Dirac points in realistic structures.
We find positions where the nature of the collective interactions change from being coherent to dissipative ones.
Our results significantly improve the knowledge of Dirac light-matter interfaces.
arXiv Detail & Related papers (2021-07-01T14:21:49Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.