Accelerating gradient-based topology optimization design with dual-model
neural networks
- URL: http://arxiv.org/abs/2009.06245v1
- Date: Mon, 14 Sep 2020 07:52:55 GMT
- Title: Accelerating gradient-based topology optimization design with dual-model
neural networks
- Authors: Chao Qian, Wenjing Ye
- Abstract summary: In this work, neural networks are used as efficient surrogate models for forward and sensitivity calculations.
To improve the accuracy of sensitivity analyses, dual-model neural networks that are trained with both forward and sensitivity data are constructed.
The efficiency gained in the problem with size of 64x64 is 137 times in forward calculation and 74 times in sensitivity analysis.
- Score: 21.343803954998915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Topology optimization (TO) is a common technique used in free-form designs.
However, conventional TO-based design approaches suffer from high computational
cost due to the need for repetitive forward calculations and/or sensitivity
analysis, which are typically done using high-dimensional simulations such as
Finite Element Analysis (FEA). In this work, neural networks are used as
efficient surrogate models for forward and sensitivity calculations in order to
greatly accelerate the design process of topology optimization. To improve the
accuracy of sensitivity analyses, dual-model neural networks that are trained
with both forward and sensitivity data are constructed and are integrated into
the Solid Isotropic Material with Penalization (SIMP) method to replace FEA.
The performance of the accelerated SIMP method is demonstrated on two benchmark
design problems namely minimum compliance design and metamaterial design. The
efficiency gained in the problem with size of 64x64 is 137 times in forward
calculation and 74 times in sensitivity analysis. In addition, effective data
generation methods suitable for TO designs are investigated and developed,
which lead to a great saving in training time. In both benchmark design
problems, a design accuracy of 95% can be achieved with only around 2000
training data.
Related papers
- Efficient Fault Detection in WSN Based on PCA-Optimized Deep Neural Network Slicing Trained with GOA [0.6827423171182154]
Traditional fault detection methods often struggle with optimizing deep neural networks (DNNs) for efficient performance.<n>This study proposes a novel hybrid method combining Principal Component Analysis (PCA) with a DNN optimized by the Grasshopper Optimization Algorithm (GOA) to address these limitations.<n>Our approach achieves a remarkable 99.72% classification accuracy, with exceptional precision and recall, outperforming conventional methods.
arXiv Detail & Related papers (2025-05-11T15:51:56Z) - Accelerated Gradient-based Design Optimization Via Differentiable Physics-Informed Neural Operator: A Composites Autoclave Processing Case Study [0.0]
We introduce a novel Physics-Informed DeepONet (PIDON) architecture to effectively model the nonlinear behavior of complex engineering systems.
We demonstrate the effectiveness of this framework in the optimization of aerospace-grade composites curing processes achieving a 3x speedup.
The proposed model has the potential to be used as a scalable and efficient optimization tool for broader applications in advanced engineering and digital twin systems.
arXiv Detail & Related papers (2025-02-17T07:11:46Z) - PearSAN: A Machine Learning Method for Inverse Design using Pearson Correlated Surrogate Annealing [66.27103948750306]
PearSAN is a machine learning-assisted optimization algorithm applicable to inverse design problems with large design spaces.
It uses a Pearson correlated surrogate model to predict the figure of merit of the true design metric.
It achieves a state-of-the-art maximum design efficiency of 97%, and is at least an order of magnitude faster than previous methods.
arXiv Detail & Related papers (2024-12-26T17:02:19Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Mechanistic Design and Scaling of Hybrid Architectures [114.3129802943915]
We identify and test new hybrid architectures constructed from a variety of computational primitives.
We experimentally validate the resulting architectures via an extensive compute-optimal and a new state-optimal scaling law analysis.
We find MAD synthetics to correlate with compute-optimal perplexity, enabling accurate evaluation of new architectures.
arXiv Detail & Related papers (2024-03-26T16:33:12Z) - Diffusion Generative Inverse Design [28.04683283070957]
Inverse design refers to the problem of optimizing the input of an objective function in order to enact a target outcome.
Recent developments in learned graph neural networks (GNNs) can be used for accurate, efficient, differentiable estimation of simulator dynamics.
We show how denoising diffusion diffusion models can be used to solve inverse design problems efficiently and propose a particle sampling algorithm for further improving their efficiency.
arXiv Detail & Related papers (2023-09-05T08:32:07Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - RAMP-Net: A Robust Adaptive MPC for Quadrotors via Physics-informed
Neural Network [6.309365332210523]
We propose a Robust Adaptive MPC framework via PINNs (RAMP-Net), which uses a neural network trained partly from simple ODEs and partly from data.
We report 7.8% to 43.2% and 8.04% to 61.5% reduction in tracking errors for speeds ranging from 0.5 to 1.75 m/s compared to two SOTA regression based MPC methods.
arXiv Detail & Related papers (2022-09-19T16:11:51Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Robust Topology Optimization Using Multi-Fidelity Variational Autoencoders [1.0124625066746595]
A robust topology optimization (RTO) problem identifies a design with the best average performance.
A neural network method is proposed that offers computational efficiency.
Numerical application of the method is shown on the robust design of L-bracket structure with single point load as well as multiple point loads.
arXiv Detail & Related papers (2021-07-19T20:40:51Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z) - An adaptive artificial neural network-based generative design method for
layout designs [17.377351418260577]
An adaptive artificial neural network-based generative design approach is proposed and developed.
A novel adaptive learning and optimization strategy is proposed, which allows the design space to be effectively explored.
The performance of the proposed design method is demonstrated on two heat source layout design problems.
arXiv Detail & Related papers (2021-01-29T05:32:17Z) - An AI-Assisted Design Method for Topology Optimization Without
Pre-Optimized Training Data [68.8204255655161]
An AI-assisted design method based on topology optimization is presented, which is able to obtain optimized designs in a direct way.
Designs are provided by an artificial neural network, the predictor, on the basis of boundary conditions and degree of filling as input data.
arXiv Detail & Related papers (2020-12-11T14:33:27Z) - Enhanced data efficiency using deep neural networks and Gaussian
processes for aerodynamic design optimization [0.0]
Adjoint-based optimization methods are attractive for aerodynamic shape design.
They can become prohibitively expensive when multiple optimization problems are being solved.
We propose a machine learning enabled, surrogate-based framework that replaces the expensive adjoint solver.
arXiv Detail & Related papers (2020-08-15T15:09:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.