論文の概要: Exploring Level Blending across Platformers via Paths and Affordances
- arxiv url: http://arxiv.org/abs/2009.06356v1
- Date: Sat, 22 Aug 2020 16:43:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-26 07:37:39.528915
- Title: Exploring Level Blending across Platformers via Paths and Affordances
- Title(参考訳): プラットフォームを横断するレベルブレンドの探索 : パスとアクダクタンス
- Authors: Anurag Sarkar, Adam Summerville, Sam Snodgrass, Gerard Bentley, Joseph
Osborn
- Abstract要約: 複数のドメインにまたがる新しいゲームコンテンツを作成するための新しいPCGMLアプローチを提案する。
6つの異なるプラットフォームゲームからデータをエンコードし、このデータに基づいて変分オートエンコーダを訓練するために、新しい価格とパス語彙を使用します。
- 参考スコア(独自算出の注目度): 5.019592823495709
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Techniques for procedural content generation via machine learning (PCGML)
have been shown to be useful for generating novel game content. While used
primarily for producing new content in the style of the game domain used for
training, recent works have increasingly started to explore methods for
discovering and generating content in novel domains via techniques such as
level blending and domain transfer. In this paper, we build on these works and
introduce a new PCGML approach for producing novel game content spanning
multiple domains. We use a new affordance and path vocabulary to encode data
from six different platformer games and train variational autoencoders on this
data, enabling us to capture the latent level space spanning all the domains
and generate new content with varying proportions of the different domains.
- Abstract(参考訳): 機械学習(PCGML)による手続き的コンテンツ生成技術は,新しいゲームコンテンツの生成に有用であることが示されている。
主にトレーニングに使用されるゲームドメインのスタイルで新しいコンテンツを生成するために使用されるが、近年ではレベルブレンディングやドメイン転送といった技術を用いて、新しいドメインでコンテンツを発見し、生成する方法が研究され始めている。
本稿では,これらの研究に基づいて,複数のドメインにまたがる新しいゲームコンテンツを作成するためのPCGMLアプローチを提案する。
6つの異なるプラットフォームゲームからのデータをエンコードし、このデータ上で変分オートエンコーダをトレーニングするために、新しいアプライアンスとパス語彙を使用し、すべてのドメインにまたがる潜在レベルスペースをキャプチャし、異なるドメインの比率で新しいコンテンツを生成することができます。
関連論文リスト
- Procedural Content Generation in Games: A Survey with Insights on Emerging LLM Integration [1.03590082373586]
プロシージャコンテンツ生成(PCG)は、アルゴリズムを用いてゲームコンテンツの自動生成として定義される。
プレイヤーのエンゲージメントを高め、ゲームデザイナーの仕事を楽にする。
PCGにおけるディープラーニングアプローチの最近の進歩は、研究者や実践者がより洗練されたコンテンツを作成できるようにしている。
大規模言語モデル (LLMs) が登場し、PCGの進歩の軌跡を本当に破壊した。
論文 参考訳(メタデータ) (2024-10-21T05:10:13Z) - Procedural Content Generation via Knowledge Transformation (PCG-KT) [8.134009219520289]
知識変換(PCG-KT)による手続き的コンテンツ生成の概念を導入する。
本研究の動機は,先進的な知識を再調達することで,新たなコンテンツを生み出すことに焦点を当てた最近のPCG作品が多数あることにある。
論文 参考訳(メタデータ) (2023-05-01T03:31:22Z) - Domain Invariant Masked Autoencoders for Self-supervised Learning from
Multi-domains [73.54897096088149]
マルチドメインからの自己教師型学習のためのドメイン不変のMasked AutoEncoder (DiMAE)を提案する。
中心となる考え方は、入力画像を異なるドメインからのスタイルノイズで拡張し、拡張イメージの埋め込みからイメージを再構築することである。
PACSとDomainNetの実験は、最近の最先端の手法と比較して、DiMAEがかなりの利益を得ていることを示している。
論文 参考訳(メタデータ) (2022-05-10T09:49:40Z) - Variational Attention: Propagating Domain-Specific Knowledge for
Multi-Domain Learning in Crowd Counting [75.80116276369694]
群集カウントでは, 激しいラベル付けの問題により, 新しい大規模データセットを収集する難易度が知覚される。
マルチドメイン共同学習を活用し,DKPNet(Domain-specific Knowledge Propagating Network)を提案する。
主に、異なるドメインに対する注意分布を明示的にモデル化する、新しい変動注意法(VA)技術を提案する。
論文 参考訳(メタデータ) (2021-08-18T08:06:37Z) - Open Domain Generalization with Domain-Augmented Meta-Learning [83.59952915761141]
オープンドメイン一般化(OpenDG)の新しい実践的問題について研究する。
本稿では,オープンドメイン一般化表現を学ぶためのメタ学習フレームワークを提案する。
種々のマルチドメインデータセットの実験結果から、提案したドメイン拡張メタラーニング(DAML)が、未確認ドメイン認識の先行手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-04-08T09:12:24Z) - Multi-Source Domain Adaptation with Collaborative Learning for Semantic
Segmentation [32.95273803359897]
マルチソース非監視ドメイン適応(MSDA)は、複数のラベル付きソースドメインで訓練されたモデルをラベル付きターゲットドメインに適応することを目的とする。
セマンティックセグメンテーションのための協調学習に基づく新しいマルチソースドメイン適応フレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-08T12:51:42Z) - mDALU: Multi-Source Domain Adaptation and Label Unification with Partial
Datasets [102.62639692656458]
本稿では,この課題をマルチソースドメイン適応とラベル統一の問題として扱う。
本手法は,部分教師あり適応段階と完全教師あり適応段階からなる。
本手法は,画像分類,2次元意味画像分割,ジョイント2d-3d意味セグメンテーションの3つのタスクで検証する。
論文 参考訳(メタデータ) (2020-12-15T15:58:03Z) - Multi-Domain Level Generation and Blending with Sketches via
Example-Driven BSP and Variational Autoencoders [3.5234963231260177]
構造パターンの再結合,適応,再利用が可能なレベル生成のためのPCGMLアプローチを提案する。
提案手法は, 構造的コンポーネントを維持しながら, ドメインを融合させることが可能であることを示す。
論文 参考訳(メタデータ) (2020-06-17T12:21:22Z) - Capturing Local and Global Patterns in Procedural Content Generation via
Machine Learning [9.697217570243845]
機械学習(PCGML)法による最近の手続き的コンテンツ生成により、学習者は既存のコンテンツから類似したコンテンツを生成することができる。
これらのアプローチが対称性のような大規模な視覚パターンをどの程度うまく捉えることができるかは、オープンな疑問である。
本稿では,PCGMLアルゴリズムが適切なパターンを生成する能力について,その領域として3つのゲームにマッチする手法を提案する。
論文 参考訳(メタデータ) (2020-05-26T08:58:37Z) - TriGAN: Image-to-Image Translation for Multi-Source Domain Adaptation [82.52514546441247]
本稿では,ジェネレーティブ・アドバイサル・ネットワークに基づくマルチソース・ドメイン適応(MSDA)の最初のアプローチを提案する。
本手法は,画像の出現がドメイン,スタイル,内容の3つの要因に依存するという観察に着想を得たものである。
提案手法はMSDAベンチマークを用いて試行し,最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-04-19T05:07:22Z) - Deep Domain-Adversarial Image Generation for Domain Generalisation [115.21519842245752]
マシンラーニングモデルは通常、ソースデータセットでトレーニングされたり、異なるディストリビューションのターゲットデータセットで評価されたりする際に、ドメインシフトの問題に悩まされる。
この問題を解決するために、ドメイン一般化(DG)手法は、訓練されたモデルが未知のドメインに一般化できるように、複数のソースドメインからのデータを活用することを目的としている。
我々はemphDeep Domain-Adversarial Image Generation (DDAIG)に基づく新しいDG手法を提案する。
論文 参考訳(メタデータ) (2020-03-12T23:17:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。