論文の概要: Eating Habits Discovery in Egocentric Photo-streams
- arxiv url: http://arxiv.org/abs/2009.07646v1
- Date: Wed, 16 Sep 2020 12:46:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 00:20:52.199617
- Title: Eating Habits Discovery in Egocentric Photo-streams
- Title(参考訳): エゴセントリックフォトストリームにおける食事習慣の発見
- Authors: Estefania Talavera, Andreea Glavan, Alina Matei, Petia Radeva
- Abstract要約: 食事関連行動パターン探索モデルを構築し,日常的に実施されている活動から栄養のルーチンを明らかにする。
このフレームワーク内では、単純だが堅牢で高速な新しい分類パイプラインを提示する。
本稿では,カメラが単独で食べる際の食品関連シーンの識別への応用について述べる。
- 参考スコア(独自算出の注目度): 9.436913961194671
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Eating habits are learned throughout the early stages of our lives. However,
it is not easy to be aware of how our food-related routine affects our healthy
living. In this work, we address the unsupervised discovery of nutritional
habits from egocentric photo-streams. We build a food-related behavioural
pattern discovery model, which discloses nutritional routines from the
activities performed throughout the days. To do so, we rely on
Dynamic-Time-Warping for the evaluation of similarity among the collected days.
Within this framework, we present a simple, but robust and fast novel
classification pipeline that outperforms the state-of-the-art on food-related
image classification with a weighted accuracy and F-score of 70% and 63%,
respectively. Later, we identify days composed of nutritional activities that
do not describe the habits of the person as anomalies in the daily life of the
user with the Isolation Forest method. Furthermore, we show an application for
the identification of food-related scenes when the camera wearer eats in
isolation. Results have shown the good performance of the proposed model and
its relevance to visualize the nutritional habits of individuals.
- Abstract(参考訳): 食事習慣は、私たちの人生の初期段階を通して学習されます。
しかし、食品関連のルーチンが健康的な生活にどう影響するかを知ることは容易ではない。
本研究では,エゴ中心のフォトストリームからの栄養習慣の無監督発見に対処する。
食品関連行動パターン発見モデルを構築し,その日を通して実施した行動から栄養状態を明らかにする。
そのため、収集された日間の類似性を評価するために、動的時間ワーピングに頼る。
この枠組みでは,食品関連画像の分類において,重み付け精度が70%,f-scoreが63%,簡易かつ堅牢で高速な分類パイプラインが提案されている。
その後、隔離林法により、利用者の日常生活における生活習慣を異常として記述しない栄養活動からなる日を同定した。
さらに,カメラ装着者が単独で食事をする場合の食品関連シーンの識別の応用例を示す。
その結果, 提案モデルの有効性と, 個人の栄養習慣を可視化する妥当性が示された。
関連論文リスト
- NutritionVerse-Direct: Exploring Deep Neural Networks for Multitask Nutrition Prediction from Food Images [63.314702537010355]
自己申告法はしばしば不正確であり、重大な偏見に悩まされる。
近年、食品画像から栄養情報を予測するためにコンピュータビジョン予測システムを用いた研究が進められている。
本稿では,様々なニューラルネットワークアーキテクチャを活用することにより,食事摂取量推定の有効性を高めることを目的とする。
論文 参考訳(メタデータ) (2024-05-13T14:56:55Z) - How Much You Ate? Food Portion Estimation on Spoons [63.611551981684244]
現在の画像に基づく食品部分推定アルゴリズムは、ユーザが食事の画像を1、2回取ることを前提としている。
本稿では,静止型ユーザ向けカメラを用いて,機器上の食品の追跡を行う革新的なソリューションを提案する。
本システムは,スープやシチューなどの液状固形不均一混合物の栄養含量の推定に信頼性が高い。
論文 参考訳(メタデータ) (2024-05-12T00:16:02Z) - From Canteen Food to Daily Meals: Generalizing Food Recognition to More
Practical Scenarios [92.58097090916166]
DailyFood-172とDailyFood-16という2つの新しいベンチマークを、毎日の食事から食のイメージをキュレートする。
これらの2つのデータセットは、よく計算された食品画像領域から日常的な食品画像領域へのアプローチの伝達性を評価するために使用される。
論文 参考訳(メタデータ) (2024-03-12T08:32:23Z) - NutritionVerse-Real: An Open Access Manually Collected 2D Food Scene
Dataset for Dietary Intake Estimation [68.49526750115429]
食事摂取推定のための2D食品シーンデータセットであるNutritionVerse-Realを導入する。
NutritionVerse-Realデータセットは、実生活における食品シーンのイメージを手作業で収集し、各成分の重量を測定し、各料理の食生活内容を計算することによって作成されました。
論文 参考訳(メタデータ) (2023-11-20T11:05:20Z) - Personalized Food Image Classification: Benchmark Datasets and New
Baseline [8.019925729254178]
本稿では、自己教師付き学習と時間的特徴情報を活用することにより、個人化された食品画像分類のための新しい枠組みを提案する。
提案手法は両方のベンチマークデータセットで評価され,既存手法と比較して性能が向上した。
論文 参考訳(メタデータ) (2023-09-15T20:11:07Z) - NutritionVerse: Empirical Study of Various Dietary Intake Estimation Approaches [59.38343165508926]
食事の正確な摂取推定は、健康的な食事を支援するための政策やプログラムを伝える上で重要である。
最近の研究は、コンピュータービジョンと機械学習を使用して、食物画像から食事摂取を自動的に推定することに焦点を当てている。
我々は,84,984個の合成2D食品画像と関連する食事情報を用いた最初の大規模データセットであるNutritionVerse-Synthを紹介した。
また、リアルなイメージデータセットであるNutritionVerse-Realを収集し、リアル性を評価するために、251の料理の889のイメージを含む。
論文 参考訳(メタデータ) (2023-09-14T13:29:41Z) - Self-Supervised Visual Representation Learning on Food Images [6.602838826255494]
既存の深層学習手法は、食品画像の人間のアノテーションに基づいて、下流タスクの視覚的表現を学習する。
実生活のほとんどの食品画像はラベルなしで取得され、データアノテーションには多くの時間と人的労力が必要です。
本稿では,食品画像における自己指導型学習手法の実装と分析に焦点をあてる。
論文 参考訳(メタデータ) (2023-03-16T02:31:51Z) - Towards the Creation of a Nutrition and Food Group Based Image Database [58.429385707376554]
栄養・食品群に基づく画像データベースを構築するための枠組みを提案する。
米国農務省食品栄養データベース(FNDDS)における食品群に基づく食品コードリンクプロトコルを設計する。
提案手法は16,114個の食品データセットを含む栄養・食品群に基づく画像データベースを構築するために用いられる。
論文 参考訳(メタデータ) (2022-06-05T02:41:44Z) - An Intelligent Passive Food Intake Assessment System with Egocentric
Cameras [14.067860492694251]
栄養失調は低所得国(LMIC)の主要な公衆衛生問題である
我々は,エゴセントリックカメラを用いた知的受動的摂食評価システムの実装を提案する。
摂取量を確実に監視し、ユーザの食行動にフィードバックを与えることができます。
論文 参考訳(メタデータ) (2021-05-07T09:47:51Z) - Saliency-Aware Class-Agnostic Food Image Segmentation [10.664526852464812]
クラス別食品画像分割法を提案する。
画像の前後の情報を利用すれば、目立たないオブジェクトを見つけることで、食べ物のイメージをセグメンテーションすることができる。
本手法は,食餌研究から収集した食品画像を用いて検証する。
論文 参考訳(メタデータ) (2021-02-13T08:05:19Z) - MyFood: A Food Segmentation and Classification System to Aid Nutritional
Monitoring [1.5469452301122173]
食料モニタリングの欠如は、人口の体重増加に大きく寄与している。
食品画像を認識するためにコンピュータビジョンでいくつかのソリューションが提案されているが、栄養モニタリングに特化しているものはほとんどない。
本研究は, ユーザの食事と栄養摂取の自動モニタリングを支援するために, 画像に提示された食品を分類・分別するインテリジェントシステムの開発について述べる。
論文 参考訳(メタデータ) (2020-12-05T17:40:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。