論文の概要: GeneraLight: Improving Environment Generalization of Traffic Signal
Control via Meta Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2009.08052v1
- Date: Thu, 17 Sep 2020 04:14:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 07:57:46.107560
- Title: GeneraLight: Improving Environment Generalization of Traffic Signal
Control via Meta Reinforcement Learning
- Title(参考訳): GeneraLight:メタ強化学習による交通信号制御の環境一般化
- Authors: Chang Liu, Huichu Zhang, Weinan Zhang, Guanjie Zheng, Yong Yu
- Abstract要約: 本稿では,Wasserstein生成逆数ネットワークに基づく新しいトラフィックフロー生成手法を提案し,十分な多種多様な品質のトラフィックフローを生成する。
GeneraLightは、フロークラスタリングとモデルに依存しないメタラーニングのアイデアを組み合わせることで、一般化のパフォーマンスを向上する。
- 参考スコア(独自算出の注目度): 35.351323110536924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The heavy traffic congestion problem has always been a concern for modern
cities. To alleviate traffic congestion, researchers use reinforcement learning
(RL) to develop better traffic signal control (TSC) algorithms in recent years.
However, most RL models are trained and tested in the same traffic flow
environment, which results in a serious overfitting problem. Since the traffic
flow environment in the real world keeps varying, these models can hardly be
applied due to the lack of generalization ability. Besides, the limited number
of accessible traffic flow data brings extra difficulty in testing the
generalization ability of the models. In this paper, we design a novel traffic
flow generator based on Wasserstein generative adversarial network to generate
sufficient diverse and quality traffic flows and use them to build proper
training and testing environments. Then we propose a meta-RL TSC framework
GeneraLight to improve the generalization ability of TSC models. GeneraLight
boosts the generalization performance by combining the idea of flow clustering
and model-agnostic meta-learning. We conduct extensive experiments on multiple
real-world datasets to show the superior performance of GeneraLight on
generalizing to different traffic flows.
- Abstract(参考訳): 交通渋滞の問題は現代都市にとって常に懸念されていた。
近年、交通渋滞を軽減するため、研究者は強化学習(RL)を用いて、より優れた交通信号制御(TSC)アルゴリズムを開発した。
しかし、ほとんどのrlモデルは、同じトラフィックフロー環境でトレーニングされ、テストされ、深刻な過剰フィッティング問題を引き起こす。
実世界の交通流環境は変化し続けるため、一般化能力の欠如により、これらのモデルはほとんど適用できない。
さらに、アクセス可能なトラフィックフローデータの数が限られているため、モデルの一般化能力をテストするのがさらに困難になる。
本稿では,wasserstein生成ネットワークに基づく新しいトラヒックフロー生成器の設計を行い,十分な多様性と品質を備えたトラヒックフローを生成し,適切なトレーニングとテスト環境の構築に利用する。
次に,tscモデルの一般化能力を向上させるためのメタrl tscフレームワークgeneralightを提案する。
GeneraLightは、フロークラスタリングとモデルに依存しないメタラーニングのアイデアを組み合わせることで、一般化のパフォーマンスを向上する。
我々は、複数の実世界のデータセットに対して広範な実験を行い、異なるトラフィックフローへの一般化におけるGeneraLightの優れた性能を示す。
関連論文リスト
- A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - ADLight: A Universal Approach of Traffic Signal Control with Augmented
Data Using Reinforcement Learning [3.3458830284045065]
本稿では,拡張データ(ADLight)を用いた新しい強化学習手法を提案する。
一般化性能を向上させるために,textitmovement shuffle という新しいデータ拡張手法を開発した。
その結果,本手法の性能は,単一環境で訓練されたモデルに近いことがわかった。
論文 参考訳(メタデータ) (2022-10-24T16:21:48Z) - ModelLight: Model-Based Meta-Reinforcement Learning for Traffic Signal
Control [5.219291917441908]
本稿では,交通信号制御のためのモデルベースメタ強化学習フレームワーク(ModelLight)を提案する。
ModelLight内では、道路交差点のためのモデルのアンサンブルと最適化に基づくメタラーニング法を用いて、RLベースのトラヒックライト制御方式のデータ効率を改善する。
実世界のデータセットの実験では、ModelLightが最先端のトラヒックライト制御アルゴリズムより優れていることが示されている。
論文 参考訳(メタデータ) (2021-11-15T20:25:08Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - Back to Basics: Deep Reinforcement Learning in Traffic Signal Control [3.2880869992413255]
本稿では、自己学習信号に対する強化学習(RL)アプローチの基礎的前提について再検討する。
本稿では、ロバストな性能と、目に見えないトラフィックフローに対する優れた一般化を提供する選択の組み合わせであるRLightを提案する。
実世界のHangzhouトラフィックデータセットを用いた評価によると、RLightは最先端のルールベースおよび深層強化学習アルゴリズムより優れている。
論文 参考訳(メタデータ) (2021-09-15T09:36:23Z) - A Deep Reinforcement Learning Approach for Traffic Signal Control
Optimization [14.455497228170646]
非効率な信号制御手法は、交通渋滞やエネルギー浪費などの多くの問題を引き起こす可能性がある。
本稿では,アクター・クリティカル・ポリシー・グラデーション・アルゴリズムを拡張し,マルチエージェント・ディープ・決定性ポリシー・グラデーション(MADDPG)法を提案する。
論文 参考訳(メタデータ) (2021-07-13T14:11:04Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
交通信号の制御は、都市部の交通渋滞の緩和に必要不可欠である。
問題モデリングの複雑さが高いため、現在の作業の実験的な設定はしばしば矛盾する。
エンコーダ・デコーダ構造を用いた深層強化学習に基づく新規で強力なベースラインモデルを提案する。
論文 参考訳(メタデータ) (2021-01-24T03:55:39Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
交通信号制御は、交差点を横断する交通信号を調整し、地域や都市の交通効率を向上させることを目的としている。
近年,交通信号制御に深部強化学習(RL)を適用し,各信号がエージェントとみなされる有望な性能を示した。
本稿では,近隣情報を考慮した各交差点の分散化政策を潜時的に学習するメタ変動固有モチベーション(MetaVIM)RL法を提案する。
論文 参考訳(メタデータ) (2021-01-04T03:06:08Z) - IG-RL: Inductive Graph Reinforcement Learning for Massive-Scale Traffic
Signal Control [4.273991039651846]
適応的な交通信号制御のスケーリングには、状態と行動空間を扱う必要がある。
本稿では,グラフ畳み込みネットワークに基づくインダクティブグラフ強化学習(IG-RL)を紹介する。
我々のモデルは、新しい道路網、交通分布、交通体制に一般化することができる。
論文 参考訳(メタデータ) (2020-03-06T17:17:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。