論文の概要: How-to Present News on Social Media: A Causal Analysis of Editing News
Headlines for Boosting User Engagement
- arxiv url: http://arxiv.org/abs/2009.08100v2
- Date: Thu, 22 Apr 2021 01:52:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 11:45:53.028292
- Title: How-to Present News on Social Media: A Causal Analysis of Editing News
Headlines for Boosting User Engagement
- Title(参考訳): ソーシャルメディアに関するハウツー・ニュース: ユーザーエンゲージメント向上のためのニュース見出し編集の因果分析
- Authors: Kunwoo Park, Haewoon Kwak, Jisun An, and Sanjay Chawla
- Abstract要約: 我々は,メディアの現在の実践をデータ駆動アプローチを用いて分析する。
8つのメディアが共有するオリジナルニュース記事とそれに対応するつぶやきの並列コーパスを構築します。
そして、これらのメディアがオリジナルの見出しに対してツイートを編集し、そうした変化の影響について検討する。
- 参考スコア(独自算出の注目度): 14.829079057399838
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To reach a broader audience and optimize traffic toward news articles, media
outlets commonly run social media accounts and share their content with a short
text summary. Despite its importance of writing a compelling message in sharing
articles, the research community does not own a sufficient understanding of
what kinds of editing strategies effectively promote audience engagement. In
this study, we aim to fill the gap by analyzing media outlets' current
practices using a data-driven approach. We first build a parallel corpus of
original news articles and their corresponding tweets that eight media outlets
shared. Then, we explore how those media edited tweets against original
headlines and the effects of such changes. To estimate the effects of editing
news headlines for social media sharing in audience engagement, we present a
systematic analysis that incorporates a causal inference technique with deep
learning; using propensity score matching, it allows for estimating potential
(dis-)advantages of an editing style compared to counterfactual cases where a
similar news article is shared with a different style. According to the
analyses of various editing styles, we report common and differing effects of
the styles across the outlets. To understand the effects of various editing
styles, media outlets could apply our easy-to-use tool by themselves.
- Abstract(参考訳): より広いオーディエンスにリーチし、ニュース記事へのトラフィックを最適化するために、メディアはソーシャルメディアアカウントを運用し、コンテンツを短いテキスト要約で共有する。
記事共有において魅力的なメッセージを書くことの重要性にもかかわらず、研究コミュニティは、どのような編集戦略が観客のエンゲージメントを効果的に促進するかを十分に理解していない。
本研究では,メディアの現在の実践をデータ駆動アプローチを用いて分析することで,ギャップを埋めることを目的とする。
まず8つのメディアが共有するオリジナルニュース記事とその関連ツイートの並列コーパスを構築した。
そして、これらのメディアがオリジナルの見出しに対してツイートを編集し、そうした変化の影響について検討する。
ソーシャルメディア共有におけるニュース見出しの編集効果を推定するために,提案手法を深層学習に取り入れた体系的分析を行い,類似のニュース記事が異なるスタイルで共有される場合と比較して,編集スタイルの潜在的な(非)アドバンテージを推定する。
様々な編集スタイルの分析結果から,各メディアで共通かつ異なるスタイルの効果が報告されている。
様々な編集スタイルの効果を理解するために、メディアは我々の使いやすいツールを自分で利用することができる。
関連論文リスト
- The News Comment Gap and Algorithmic Agenda Setting in Online Forums [0.0]
我々はオーストリアの新聞Der Standardから120万件のコメントを分析し、"News Comment Gap"と異なるランキングアルゴリズムの効果を理解する。
ジャーナリストはポジティブで、タイムリーで、複雑で、直感的な反応を好むのに対し、読者は、エリート作家の記事に類似したコメントを好む。
論文 参考訳(メタデータ) (2024-08-13T17:43:32Z) - ManiTweet: A New Benchmark for Identifying Manipulation of News on Social Media [74.93847489218008]
ソーシャルメディア上でのニュースの操作を識別し,ソーシャルメディア投稿の操作を検出し,操作された情報や挿入された情報を特定することを目的とした,新しいタスクを提案する。
この課題を研究するために,データ収集スキーマを提案し,3.6K対のツイートとそれに対応する記事からなるManiTweetと呼ばれるデータセットをキュレートした。
我々の分析では、このタスクは非常に難しいことを示し、大きな言語モデル(LLM)は不満足なパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2023-05-23T16:40:07Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
イタリアのワクチン論争に関する6年間のデータセットを構築し、物語と選択バイアスを特定するためにベイジアン潜在空間モデルを採用する。
バイアスとエンゲージメントの間に非線形な関係が見られ、極端な位置へのエンゲージメントが高くなった。
Twitter上でのニュース消費の分析は、同様のイデオロギー的な立場のニュースメディアの間で、一般的なオーディエンスを明らかにしている。
論文 参考訳(メタデータ) (2023-01-14T18:58:42Z) - GREENER: Graph Neural Networks for News Media Profiling [24.675574340841163]
本稿では,ウェブ上でのニュースメディアのプロファイリングの問題について,その実態と偏見について考察する。
私たちの主な焦点は、オーディエンスの重複に基づいて、メディア間の類似性をモデル化することにあります。
予測精度は2つのタスクに対して2.5-27マクロF1ポイント向上した。
論文 参考訳(メタデータ) (2022-11-10T12:46:29Z) - Visual Persuasion in COVID-19 Social Media Content: A Multi-Modal
Characterization [30.710295617831015]
本研究では,マルチモーダルコンテンツにおける説得情報の結果を分析するための計算手法を提案する。
Twitterでシェアされた新型コロナウイルス関連のニュース記事において、人気と信頼性の2つの側面に焦点を当てている。
論文 参考訳(メタデータ) (2021-12-05T02:15:01Z) - Newsalyze: Effective Communication of Person-Targeting Biases in News
Articles [8.586057042714698]
本稿では,自然言語理解の最先端手法を組み合わせたバイアス識別システムを提案する。
第2に,非専門家のニュース消費者にニュース記事のバイアスを伝えるために,バイアスに敏感な可視化を考案する。
第3に、私たちの主な貢献は、日々のニュース消費を近似した設定においてバイアス認識を測定する大規模なユーザスタディです。
論文 参考訳(メタデータ) (2021-10-18T10:23:19Z) - How to Effectively Identify and Communicate Person-Targeting Media Bias
in Daily News Consumption? [8.586057042714698]
本稿では,コンテンツ分析のマニュアル処理を初めて自動化した,ニュースレコメンデーションのためのインプログレスシステムを提案する。
我々の推薦者は、個々のニュース記事に実際に存在している重要なフレームを検出し、明らかにする。
本研究は,イベントの異なる設定のニュース記事の推薦が,バイアスに対する意識を著しく向上させることを示す。
論文 参考訳(メタデータ) (2021-10-18T10:13:23Z) - News consumption and social media regulations policy [70.31753171707005]
我々は、ニュース消費とコンテンツ規制の間の相互作用を評価するために、反対のモデレーション手法であるTwitterとGabを強制した2つのソーシャルメディアを分析した。
以上の結果から,Twitterが追求するモデレーションの存在は,疑わしいコンテンツを著しく減少させることがわかった。
Gabに対する明確な規制の欠如は、ユーザが両方のタイプのコンテンツを扱う傾向を生じさせ、ディスカウント/エンドレスメントの振る舞いを考慮に入れた疑わしいコンテンツに対してわずかに好みを示す。
論文 参考訳(メタデータ) (2021-06-07T19:26:32Z) - Cross-Domain Learning for Classifying Propaganda in Online Contents [67.10699378370752]
本稿では,ラベル付き文書や,ニュースやつぶやきからの文をベースとしたクロスドメイン学習の手法を提案する。
本実験は,本手法の有効性を実証し,移動過程におけるソースやターゲットの様々な構成における困難さと限界を同定する。
論文 参考訳(メタデータ) (2020-11-13T10:19:13Z) - Content-based Analysis of the Cultural Differences between TikTok and
Douyin [95.32409577885645]
ショートフォームのソーシャルメディアは、聴衆にダイナミックなストーリーを伝え、彼らの注意を引き付けることによって、伝統的なメディアパラダイムから遠ざかる。
特に、興味深く、理解しやすいユニークなシーンを表現するために、日常的なオブジェクトの異なる組み合わせを用いることができる。
同じ会社によって提供されたTikTokとDouyinは、近年人気になった新しいメディアの好例だ。
メディアファッションや社会的慣用性とともに文化的な違いを表現しているという仮説が,本研究の主目的である。
論文 参考訳(メタデータ) (2020-11-03T01:47:49Z) - Causal Understanding of Fake News Dissemination on Social Media [50.4854427067898]
我々は、ユーザーがフェイクニュースを共有するのに、ユーザー属性が何をもたらすかを理解することが重要だと論じている。
偽ニュース拡散において、共同創設者は、本質的にユーザー属性やオンライン活動に関連する偽ニュース共有行動によって特徴づけられる。
本稿では,偽ニュース拡散における選択バイアスを軽減するための原則的アプローチを提案する。
論文 参考訳(メタデータ) (2020-10-20T19:37:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。