論文の概要: Learning a Deep Part-based Representation by Preserving Data
Distribution
- arxiv url: http://arxiv.org/abs/2009.08246v1
- Date: Thu, 17 Sep 2020 12:49:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 08:43:29.413881
- Title: Learning a Deep Part-based Representation by Preserving Data
Distribution
- Title(参考訳): データ分布保存による深部部分表現の学習
- Authors: Anyong Qin and Zhaowei Shang and Zhuolin Tan and Taiping Zhang and
Yuan Yan Tang
- Abstract要約: 教師なし次元減少は、高次元データ認識問題において一般的に用いられる技法の1つである。
本稿では,データ分布を保存することにより,深部部分に基づく表現を学習し,新しいアルゴリズムを分散保存ネットワーク埋め込みと呼ぶ。
実世界のデータセットにおける実験結果から,提案アルゴリズムはクラスタ精度とAMIの点で優れた性能を示した。
- 参考スコア(独自算出の注目度): 21.13421736154956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised dimensionality reduction is one of the commonly used techniques
in the field of high dimensional data recognition problems. The deep
autoencoder network which constrains the weights to be non-negative, can learn
a low dimensional part-based representation of data. On the other hand, the
inherent structure of the each data cluster can be described by the
distribution of the intraclass samples. Then one hopes to learn a new low
dimensional representation which can preserve the intrinsic structure embedded
in the original high dimensional data space perfectly. In this paper, by
preserving the data distribution, a deep part-based representation can be
learned, and the novel algorithm is called Distribution Preserving Network
Embedding (DPNE). In DPNE, we first need to estimate the distribution of the
original high dimensional data using the $k$-nearest neighbor kernel density
estimation, and then we seek a part-based representation which respects the
above distribution. The experimental results on the real-world data sets show
that the proposed algorithm has good performance in terms of cluster accuracy
and AMI. It turns out that the manifold structure in the raw data can be well
preserved in the low dimensional feature space.
- Abstract(参考訳): 教師なし次元減少は、高次元データ認識問題において一般的に用いられる技法の1つである。
非負の重みを制約するディープオートエンコーダネットワークは、データの低次元部分ベースの表現を学習することができる。
一方、各データクラスタの固有の構造は、クラス内サンプルの分布によって説明できる。
すると、元の高次元データ空間に埋め込まれた本質的な構造を完璧に保存できる新しい低次元表現を学びたいと考える。
本稿では,データ分布を保存することで,深い部分に基づく表現を学習し,新しいアルゴリズムを分散保存ネットワーク埋め込み (dpne) と呼ぶ。
DPNEでは、まず、$k$-nearest 近傍のカーネル密度推定を用いて元の高次元データの分布を推定し、上記の分布を尊重する部分的表現を求める。
実世界のデータセットにおける実験結果から,提案アルゴリズムはクラスタ精度とAMIの点で優れた性能を示した。
その結果、原データの多様体構造は低次元特徴空間で十分に保存できることが判明した。
関連論文リスト
- Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
教師なし学習は、潜在的に大きな高次元データセットの基盤構造を捉えることを目的としている。
本研究では、最適輸送のレンズの下でこれらのアプローチを再検討し、Gromov-Wasserstein問題と関係を示す。
これにより、分散還元と呼ばれる新しい一般的なフレームワークが公開され、DRとクラスタリングを特別なケースとして回復し、単一の最適化問題内でそれらに共同で対処することができる。
論文 参考訳(メタデータ) (2024-02-03T19:00:19Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - Relative intrinsic dimensionality is intrinsic to learning [49.5738281105287]
本稿では,データ分布の固有次元の概念を導入し,データの分離性特性を正確に把握する。
この本質的な次元に対して、上の親指の規則は法則となり、高本質的な次元は高度に分離可能なデータを保証する。
本稿では,2進分類問題における学習と一般化の確率について,上界と下界の両方に相対固有次元を与えることを示す。
論文 参考訳(メタデータ) (2023-10-10T10:41:45Z) - Learning Structure Aware Deep Spectral Embedding [11.509692423756448]
本稿では, スペクトル埋込み損失と構造保存損失を組み合わせ, 深層スペクトルの埋込みを考慮した新しい構造解析手法を提案する。
両タイプの情報を同時に符号化し,構造認識型スペクトル埋め込みを生成するディープニューラルネットワークアーキテクチャを提案する。
提案アルゴリズムは,公開されている6つの実世界のデータセットを用いて評価する。
論文 参考訳(メタデータ) (2023-05-14T18:18:05Z) - Side-effects of Learning from Low Dimensional Data Embedded in an
Euclidean Space [3.093890460224435]
データ多様体の必要次元におけるネットワークの深さとノイズに関連する潜在的な正則化効果について検討する。
また,騒音によるトレーニングの副作用も提示した。
論文 参考訳(メタデータ) (2022-03-01T16:55:51Z) - DeHIN: A Decentralized Framework for Embedding Large-scale Heterogeneous
Information Networks [64.62314068155997]
本稿では,異種情報ネットワーク(DeHIN)のための分散埋め込みフレームワークについて述べる。
DeHINは、大きなHINをハイパーグラフとして革新的に定式化するコンテキスト保存分割機構を提供する。
当社のフレームワークでは,木のようなパイプラインを採用することで,効率よくHINを分割する分散戦略を採用しています。
論文 参考訳(メタデータ) (2022-01-08T04:08:36Z) - Index $t$-SNE: Tracking Dynamics of High-Dimensional Datasets with
Coherent Embeddings [1.7188280334580195]
本稿では,クラスタの位置を保存した新しいものを作成するために,埋め込みを再利用する手法を提案する。
提案アルゴリズムは,新しい項目を埋め込むために$t$-SNEと同じ複雑さを持つ。
論文 参考訳(メタデータ) (2021-09-22T06:45:37Z) - A Local Similarity-Preserving Framework for Nonlinear Dimensionality
Reduction with Neural Networks [56.068488417457935]
本稿では,Vec2vecという新しい局所非線形手法を提案する。
ニューラルネットワークを訓練するために、マトリックスの近傍類似度グラフを構築し、データポイントのコンテキストを定義します。
8つの実データセットにおけるデータ分類とクラスタリングの実験により、Vec2vecは統計仮説テストにおける古典的な次元削減法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-03-10T23:10:47Z) - Kernel Two-Dimensional Ridge Regression for Subspace Clustering [45.651770340521786]
本稿では,2次元データに対する新しいサブスペースクラスタリング手法を提案する。
2Dデータを入力として直接使用するので、表現の学習はデータ固有の構造や関係から恩恵を受ける。
論文 参考訳(メタデータ) (2020-11-03T04:52:46Z) - Improving Generative Adversarial Networks with Local Coordinate Coding [150.24880482480455]
GAN(Generative Adversarial Network)は、事前定義された事前分布から現実的なデータを生成することに成功している。
実際には、意味情報はデータから学んだ潜在的な分布によって表現される。
ローカル座標符号化(LCC)を用いたLCCGANモデルを提案する。
論文 参考訳(メタデータ) (2020-07-28T09:17:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。