論文の概要: Automated Stroke Rehabilitation Assessment using Wearable Accelerometers
in Free-Living Environments
- arxiv url: http://arxiv.org/abs/2009.08798v2
- Date: Thu, 20 May 2021 22:47:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 12:23:23.017947
- Title: Automated Stroke Rehabilitation Assessment using Wearable Accelerometers
in Free-Living Environments
- Title(参考訳): 自由生活環境におけるウェアラブル加速度計による脳卒中リハビリテーション自動評価
- Authors: Xi Chen, Yu Guan, Jian-Qing Shi, Xiu-Li Du, Janet Eyre
- Abstract要約: 伝統的な脳卒中リハビリテーション評価法は主観的で高価である。
評価スコアを客観的に予測できる自動システムを開発した。
急性期および慢性期の患者のシステム評価のための総合的な実験を行った。
- 参考スコア(独自算出の注目度): 13.850999550050428
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stroke is known as a major global health problem, and for stroke survivors it
is key to monitor the recovery levels. However, traditional stroke
rehabilitation assessment methods (such as the popular clinical assessment) can
be subjective and expensive, and it is also less convenient for patients to
visit clinics in a high frequency. To address this issue, in this work based on
wearable sensing and machine learning techniques, we developed an automated
system that can predict the assessment score in an objective manner. With
wrist-worn sensors, accelerometer data was collected from 59 stroke survivors
in free-living environments for a duration of 8 weeks, and we aim to map the
week-wise accelerometer data (3 days per week) to the assessment score by
developing signal processing and predictive model pipeline. To achieve this, we
proposed two types of new features, which can encode the rehabilitation
information from both paralysed/non-paralysed sides while suppressing the
high-level noises such as irrelevant daily activities. Based on the proposed
features, we further developed the longitudinal mixed-effects model with
Gaussian process prior (LMGP), which can model the random effects caused by
different subjects and time slots (during the 8 weeks). Comprehensive
experiments were conducted to evaluate our system on both acute and chronic
patients, and the results suggested its effectiveness.
- Abstract(参考訳): ストロークは世界的な健康問題として知られており、脳卒中生存者にとって回復レベルを監視する鍵となる。
しかし、従来の脳卒中リハビリテーション評価法(一般的な臨床評価法など)は主観的かつ高価であり、また、患者が高頻度で診療所を訪れることも容易ではない。
この問題に対処するために,ウェアラブルセンシングと機械学習技術に基づく本研究では,評価スコアを客観的に予測可能な自動システムを開発した。
手首のセンサを用いて,59名のストロークサバイバーから8週間の自由生活環境における加速度計データを収集し,信号処理と予測モデルパイプラインの開発により,週間単位の加速度計データを評価スコアにマッピングすることを目的とした。
そこで本研究では,麻痺側と非麻痺側の両方からのリハビリテーション情報をエンコードし,無関係な日常活動などの高レベルノイズを抑制する2種類の新機能を提案する。
提案した特徴に基づいて,異なる被験者や時間帯(8週間)で生じるランダムな影響をモデル化できる,ガウス過程先行(LMGP)を用いた縦混合効果モデルをさらに発展させた。
急性期および慢性期におけるシステム評価のために総合的な実験を行い,その効果を示唆した。
関連論文リスト
- On the effectiveness of smartphone IMU sensors and Deep Learning in the detection of cardiorespiratory conditions [0.21987601456703473]
本研究は, 心肺疾患の早期スクリーニングのための, 取得プロトコルに基づく革新的な手法を提案する。
5つの異なる身体領域の加速度計とジャイロスコープで得られた呼吸動態を記録したデータセットを臨床的に収集した。
本研究では,早期心肺疾患スクリーニングのためのエンド・ツー・エンドのディープラーニングパイプラインを提案する。
論文 参考訳(メタデータ) (2024-08-27T18:29:47Z) - Assessing Upper Limb Motor Function in the Immediate Post-Stroke Perioud
Using Accelerometry [0.6390468088226495]
本研究の目的は、脳卒中患者の上肢運動機能の急激な変化を監視し、迅速に検出するために、加速度計による測定も利用できるかどうかを判断することである。
6つの二分分類モデルが, 頭蓋上肢加速度計の特徴値の変動時間に基づいて作成した。
分類モデルでは、AUC(Area Under the Curve)スコアは15分間のデータウィンドウで0.72から0.82から120分間のデータウィンドウで0.77から0.94まで変化した。
論文 参考訳(メタデータ) (2023-11-01T18:43:20Z) - Undersampling and Cumulative Class Re-decision Methods to Improve
Detection of Agitation in People with Dementia [16.949993123698345]
消化は認知症(PwD)で最も多い症状の1つである。
前回の研究では、参加者17名から600日間のマルチモーダルウェアラブルセンサデータを収集し、1分間の窓での動揺を検出する機械学習モデルを開発した。
本稿では,まず,不均衡を解消するために異なるアンダーサンプリング手法を実装し,通常の動作データの20%だけが競合的動揺検出モデルの訓練に適しているという結論に至った。
論文 参考訳(メタデータ) (2023-02-07T03:14:00Z) - Towards Stroke Patients' Upper-limb Automatic Motor Assessment Using
Smartwatches [5.132618393976799]
スマートウォッチを用いて脳卒中患者に対する上肢評価パイプラインを設計することを目的としている。
本研究の目的は,Fugl-Meyerアセスメント尺度に触発された4つの重要な動きを自動的に検出し,認識することである。
論文 参考訳(メタデータ) (2022-12-09T14:00:49Z) - Easing Automatic Neurorehabilitation via Classification and Smoothness
Analysis [1.44744639843118]
本稿では,浅い深層学習アーキテクチャを用いて患者の動作を認識することから始まる自動評価パイプラインを提案する。
この研究の特筆すべき点は、Fugl-Meyerからインスパイアされた動きを、脳卒中患者によく見られる上肢臨床脳卒中評価尺度として表現するため、使用されるデータセットが臨床的に関連している点である。
本研究は, リハビリテーションセッションにおける患者の経過について, 臨床医の所見に応じた結論を得るとともに, 平滑性の観点から, 健常者と患者の運動のコントラストを検出することが可能であることが示唆された。
論文 参考訳(メタデータ) (2022-12-09T13:59:14Z) - Designing A Clinically Applicable Deep Recurrent Model to Identify
Neuropsychiatric Symptoms in People Living with Dementia Using In-Home
Monitoring Data [52.40058724040671]
鎮静は認知症において高い有病率を有する神経精神医学症状の1つである。
扇動エピソードの検出は、認知症に生きる人々(PLWD)に早期かつタイムリーな介入を提供するのに役立つ。
本研究は,家庭内モニタリングデータを用いてPLWDの動揺リスクを分析するための教師付き学習モデルを提案する。
論文 参考訳(メタデータ) (2021-10-19T11:45:01Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
神経活動を記録して発作を検出するインプラントデバイスは、発作を抑えるために警告を発したり神経刺激を誘発したりするために採用されている。
移植可能な発作検出システムでは、低出力で最先端のオンライン学習アルゴリズムを使用して、神経信号のドリフトに動的に適応することができる。
SOULはTSMCの28nmプロセスで0.1mm2を占め、1.5nJ/分級エネルギー効率を実現した。
論文 参考訳(メタデータ) (2021-10-01T23:01:20Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
本稿では,患者の予後と治療反応を予測するための統合型深層学習手法を提案する。
我々は,マルチモーダル非同期時系列分類タスクとして,確率モデリングを定式化する。
我々の予測モデルは、長期生存の観点から、低リスク、高リスクの患者をさらに階層化する可能性がある。
論文 参考訳(メタデータ) (2020-10-08T15:30:17Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
パーキンソン病は神経疾患であり、高齢者に多い。
伝統的に病気を診断する方法は、一連の活動テストの品質に関する個人的主観的臨床評価に依存している。
そこで本研究では,スマートフォンが収集した生の行動データを用いて,パーキンソン病を予測するための時系列に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2020-09-25T01:50:15Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
本稿では,電子カルテから心血管イベントを予測するための注意機構を備えたマルチタスク・リカレントニューラルネットワークを提案する。
提案手法は、NHS Foundation Trustの5年間のデータを用いて、標準的な臨床リスク予測器(QRISK)と機械学習の代替手段と比較される。
論文 参考訳(メタデータ) (2020-07-16T17:43:13Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。