論文の概要: Towards Stroke Patients' Upper-limb Automatic Motor Assessment Using
Smartwatches
- arxiv url: http://arxiv.org/abs/2212.05062v1
- Date: Fri, 9 Dec 2022 14:00:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 17:42:27.356622
- Title: Towards Stroke Patients' Upper-limb Automatic Motor Assessment Using
Smartwatches
- Title(参考訳): 脳卒中患者の上肢自動運動評価に向けて
- Authors: Asma Bensalah, Jialuo Chen, Alicia Forn\'es, Cristina Carmona-Duarte,
Josep Llad\'os, and Miguel A.Ferrer
- Abstract要約: スマートウォッチを用いて脳卒中患者に対する上肢評価パイプラインを設計することを目的としている。
本研究の目的は,Fugl-Meyerアセスメント尺度に触発された4つの重要な動きを自動的に検出し,認識することである。
- 参考スコア(独自算出の注目度): 5.132618393976799
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Assessing the physical condition in rehabilitation scenarios is a challenging
problem, since it involves Human Activity Recognition (HAR) and kinematic
analysis methods. In addition, the difficulties increase in unconstrained
rehabilitation scenarios, which are much closer to the real use cases. In
particular, our aim is to design an upper-limb assessment pipeline for stroke
patients using smartwatches. We focus on the HAR task, as it is the first part
of the assessing pipeline. Our main target is to automatically detect and
recognize four key movements inspired by the Fugl-Meyer assessment scale, which
are performed in both constrained and unconstrained scenarios. In addition to
the application protocol and dataset, we propose two detection and
classification baseline methods. We believe that the proposed framework,
dataset and baseline results will serve to foster this research field.
- Abstract(参考訳): リハビリテーションシナリオにおける身体状態の評価は,HAR(Human Activity Recognition)とキネマティック解析法が関係しているため,難しい問題である。
さらに,リハビリテーションシナリオの難易度が向上し,実際の使用例にかなり近いものとなった。
特に,スマートウォッチを用いた脳卒中患者の上肢評価パイプラインの設計が目的である。
評価パイプラインの第1部であるため、HARタスクに重点を置いています。
本研究の目的は,Fugl-Meyerアセスメント尺度にインスパイアされた4つの重要な動きを自動的に検出し,認識することである。
アプリケーションプロトコルとデータセットに加えて,2つの検出法と分類基準法を提案する。
提案するフレームワーク,データセット,ベースラインの結果が,この研究分野の育成に役立つと信じている。
関連論文リスト
- Fine-tuning -- a Transfer Learning approach [0.22344294014777952]
電子健康記録(EHR)の欠落は、この貴重な資源に欠落するデータが豊富にあるため、しばしば妨げられる。
既存の深い計算手法は、計算処理とダウンストリーム解析の両方を組み込んだエンドツーエンドのパイプラインに依存している。
本稿では,モジュール型深層学習型計算・分類パイプラインの開発について検討する。
論文 参考訳(メタデータ) (2024-11-06T14:18:23Z) - A Medical Low-Back Pain Physical Rehabilitation Dataset for Human Body Movement Analysis [0.6990493129893111]
本稿では,低背痛リハビリテーションを施行した臨床患者の医療データセットについて,4つの課題に対処し,提案する。
データセットには、3D Kinectスケルトンの位置と向き、RGBビデオ、2Dスケルトンデータ、正確性を評価するための医用アノテーション、身体部分とタイムパンのエラー分類とローカライゼーションが含まれている。
論文 参考訳(メタデータ) (2024-06-29T19:50:06Z) - Easing Automatic Neurorehabilitation via Classification and Smoothness
Analysis [1.44744639843118]
本稿では,浅い深層学習アーキテクチャを用いて患者の動作を認識することから始まる自動評価パイプラインを提案する。
この研究の特筆すべき点は、Fugl-Meyerからインスパイアされた動きを、脳卒中患者によく見られる上肢臨床脳卒中評価尺度として表現するため、使用されるデータセットが臨床的に関連している点である。
本研究は, リハビリテーションセッションにおける患者の経過について, 臨床医の所見に応じた結論を得るとともに, 平滑性の観点から, 健常者と患者の運動のコントラストを検出することが可能であることが示唆された。
論文 参考訳(メタデータ) (2022-12-09T13:59:14Z) - Trust Your $\nabla$: Gradient-based Intervention Targeting for Causal Discovery [49.084423861263524]
本稿では,GIT を短縮した新しいグラディエント型インターベンションターゲティング手法を提案する。
GITは、介入獲得関数の信号を提供するために勾配に基づく因果探索フレームワークの勾配推定器を「信頼」する。
我々はシミュレーションおよび実世界のデータセットで広範な実験を行い、GITが競合するベースラインと同等に動作することを示す。
論文 参考訳(メタデータ) (2022-11-24T17:04:45Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
本稿では,キュウリ葉の粉状ミドウを自動的に認識する深層学習手法を提案する。
マルチスペクトルイメージングデータに適用した教師なし深層学習技術に焦点をあてる。
本稿では, オートエンコーダアーキテクチャを用いて, 疾患検出のための2つの手法を提案する。
論文 参考訳(メタデータ) (2021-12-20T13:29:13Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
内視鏡下粘膜下郭清術における高精度かつリアルタイムなランドマーク検出のための形状認識型関係ネットワークを提案する。
まず,ランドマーク間の空間的関係に関する先行知識を直感的に表現する関係キーポイント・ヒートマップを自動生成するアルゴリズムを考案する。
次に、事前知識を学習プロセスに段階的に組み込むために、2つの補完的な正規化手法を開発する。
論文 参考訳(メタデータ) (2021-11-08T07:57:30Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
本稿では,ドメイン固有パスマッチングのためのトランスフォーマー言語モデルをトレーニングするためのルールベースのセルフスーパービジョンであるCAPRを紹介する。
目的をトランスフォーマーベースの4つのアーキテクチャ、コンテキスト文書ベクトル、ビ-、ポリエンコーダ、クロスエンコーダに適用する。
本稿では,ドメイン固有パスの検索において,CAPRが強いベースラインを上回り,ルールベースおよび人間ラベル付きパスを効果的に一般化することを示す。
論文 参考訳(メタデータ) (2021-08-02T10:42:52Z) - One-shot action recognition towards novel assistive therapies [63.23654147345168]
この作業は、アクション模倣ゲームを含む医療療法の自動分析によって動機づけられます。
提案手法は、異種運動データ条件を標準化する前処理ステップを組み込んだものである。
自閉症者に対するセラピー支援のための自動ビデオ分析の実際の利用事例について検討した。
論文 参考訳(メタデータ) (2021-02-17T19:41:37Z) - Cross-Task Representation Learning for Anatomical Landmark Detection [20.079451546446712]
本稿では,クロスタスク表現学習を通じて,ソースとターゲットタスク間の知識伝達を規則化することを提案する。
本手法は胎児アルコール症候群の診断を容易にする顔の解剖学的特徴を抽出するためのものである。
本稿では,目的モデル上の最終モデルの特徴と中間モデルの特徴を制約することにより,表現学習のための2つのアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-28T21:22:49Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。