Classification and Region Analysis of COVID-19 Infection using Lung CT
Images and Deep Convolutional Neural Networks
- URL: http://arxiv.org/abs/2009.08864v1
- Date: Wed, 16 Sep 2020 02:28:46 GMT
- Title: Classification and Region Analysis of COVID-19 Infection using Lung CT
Images and Deep Convolutional Neural Networks
- Authors: Saddam Hussain Khan, Anabia Sohail, Asifullah Khan, and Yeon Soo Lee
- Abstract summary: This work proposes a two-stage deep Convolutional Neural Networks (CNNs) based framework for delineation of COVID-19 infected regions in Lung CT images.
In the first stage, COVID-19 specific CT image features are enhanced using a two-level discrete wavelet transformation.
These enhanced CT images are then classified using the proposed custom-made deep CoV-CTNet.
In the second stage, the CT images classified as infectious images are provided to the segmentation models for the identification and analysis of COVID-19 infectious regions.
- Score: 0.8224695424591678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: COVID-19 is a global health problem. Consequently, early detection and
analysis of the infection patterns are crucial for controlling infection spread
as well as devising a treatment plan. This work proposes a two-stage deep
Convolutional Neural Networks (CNNs) based framework for delineation of
COVID-19 infected regions in Lung CT images. In the first stage, initially,
COVID-19 specific CT image features are enhanced using a two-level discrete
wavelet transformation. These enhanced CT images are then classified using the
proposed custom-made deep CoV-CTNet. In the second stage, the CT images
classified as infectious images are provided to the segmentation models for the
identification and analysis of COVID-19 infectious regions. In this regard, we
propose a novel semantic segmentation model CoV-RASeg, which systematically
uses average and max pooling operations in the encoder and decoder blocks. This
systematic utilization of max and average pooling operations helps the proposed
CoV-RASeg in simultaneously learning both the boundaries and region
homogeneity. Moreover, the idea of attention is incorporated to deal with
mildly infected regions. The proposed two-stage framework is evaluated on a
standard Lung CT image dataset, and its performance is compared with the
existing deep CNN models. The performance of the proposed CoV-CTNet is
evaluated using Mathew Correlation Coefficient (MCC) measure (0.98) and that of
proposed CoV-RASeg using Dice Similarity (DS) score (0.95). The promising
results on an unseen test set suggest that the proposed framework has the
potential to help the radiologists in the identification and analysis of
COVID-19 infected regions.
Related papers
- CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
We propose a method that does not require either large annotated datasets or backpropagation to estimate the filters of a convolutional neural network (CNN)
For a few CT images, the user draws markers at representative normal and abnormal regions.
The method generates a feature extractor composed of a sequence of convolutional layers, whose kernels are specialized in enhancing regions similar to the marked ones.
arXiv Detail & Related papers (2021-11-16T15:03:42Z) - Automatic segmentation of novel coronavirus pneumonia lesions in CT
images utilizing deep-supervised ensemble learning network [3.110938126026385]
The structure features of COVID-19 lesions are complicated and varied greatly in different cases.
A transfer learning strategy is employed to make up for the shortcoming and alleviate the overfitting problem.
A deep-supervised ensemble learning network is presented to combine local and global features for COVID-19 lesion segmentation.
arXiv Detail & Related papers (2021-10-25T11:49:20Z) - COVID-Net CT-2: Enhanced Deep Neural Networks for Detection of COVID-19
from Chest CT Images Through Bigger, More Diverse Learning [70.92379567261304]
We introduce COVID-Net CT-2, enhanced deep neural networks for COVID-19 detection from chest CT images.
We leverage explainability to investigate the decision-making behaviour of COVID-Net CT-2.
Results are promising and suggest the strong potential of deep neural networks as an effective tool for computer-aided COVID-19 assessment.
arXiv Detail & Related papers (2021-01-19T03:04:09Z) - CHS-Net: A Deep learning approach for hierarchical segmentation of
COVID-19 infected CT images [0.6091702876917281]
The pandemic of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also known as COVID-19 has been spreading worldwide.
Medical imaging such as computed tomography (CT), X-ray, etc., plays a significant role in diagnosing the patients by presenting the excellent details about the structure of the organs.
Deep learning technologies have displayed its strength in analyzing such scans to aid in the faster diagnosis of the diseases and viruses such as COVID-19.
arXiv Detail & Related papers (2020-12-13T15:02:05Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
arXiv Detail & Related papers (2020-09-08T15:49:55Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy.
There is still lack of studies on effectively quantifying the lung infection caused by COVID-19.
We propose a novel deep learning algorithm for automated segmentation of multiple COVID-19 infection regions.
arXiv Detail & Related papers (2020-04-12T16:24:59Z) - COVID_MTNet: COVID-19 Detection with Multi-Task Deep Learning Approaches [5.578413517654704]
We propose a fast and efficient way to identify COVID-19 patients with multi-task deep learning (DL) methods.
X-ray and CT scan images are considered to evaluate the proposed technique.
The detection model shows around 84.67% testing accuracy from X-ray images and 98.78% accuracy in CT-images.
arXiv Detail & Related papers (2020-04-07T23:19:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.