論文の概要: Light Direction and Color Estimation from Single Image with Deep
Regression
- arxiv url: http://arxiv.org/abs/2009.08941v1
- Date: Fri, 18 Sep 2020 17:33:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 03:34:14.604900
- Title: Light Direction and Color Estimation from Single Image with Deep
Regression
- Title(参考訳): 深い回帰を伴う単一画像からの光方向と色推定
- Authors: Hassan A. Sial, Ramon Baldrich, Maria Vanrell, Dimitris Samaras
- Abstract要約: 単一画像からシーン光源の方向と色を推定する手法を提案する。
a)SIDデータセットと同様の制約で強い影効果を持つ新しい合成データセットを使用し、(b)上記データセットに基づいてトレーニングされた深層アーキテクチャを定義し、シーン光源の方向と色を推定する。
- 参考スコア(独自算出の注目度): 25.45529007045549
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a method to estimate the direction and color of the scene light
source from a single image. Our method is based on two main ideas: (a) we use a
new synthetic dataset with strong shadow effects with similar constraints to
the SID dataset; (b) we define a deep architecture trained on the mentioned
dataset to estimate the direction and color of the scene light source. Apart
from showing good performance on synthetic images, we additionally propose a
preliminary procedure to obtain light positions of the Multi-Illumination
dataset, and, in this way, we also prove that our trained model achieves good
performance when it is applied to real scenes.
- Abstract(参考訳): 本稿では,一つの画像からシーン光源の方向と色を推定する手法を提案する。
私たちの方法は2つの主なアイデアに基づいています
(a)SIDデータセットと同様の制約で強い影効果を持つ新しい合成データセットを使用する。
b) シーン光源の方向と色を推定するために,上記データセットに基づいてトレーニングした深層アーキテクチャを定義する。
また,合成画像上での良好な性能を示すこととは別に,多照度データセットの光位置を得るための予備的な手順を提案するとともに,実場面に適用した場合に訓練したモデルが良好な性能が得られることを証明した。
関連論文リスト
- Factored-NeuS: Reconstructing Surfaces, Illumination, and Materials of
Possibly Glossy Objects [46.04357263321969]
提案する多視点画像からシーンの表面, 材料, 照明を復元する手法を開発した。
追加のデータは必要ないし、光沢のあるオブジェクトや明るい照明も扱える。
論文 参考訳(メタデータ) (2023-05-29T07:44:19Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
テンソルIRはテンソル分解とニューラルフィールドに基づく新しい逆レンダリング手法である。
TensoRFは、放射場モデリングのための最先端のアプローチである。
論文 参考訳(メタデータ) (2023-04-24T21:39:13Z) - NeFII: Inverse Rendering for Reflectance Decomposition with Near-Field
Indirect Illumination [48.42173911185454]
逆レンダリング手法は、多視点RGB画像から幾何学、材料、照明を推定することを目的としている。
本稿では,多視点画像から材料と照明を分解するエンドツーエンドの逆レンダリングパイプラインを提案する。
論文 参考訳(メタデータ) (2023-03-29T12:05:19Z) - Physics-based Indirect Illumination for Inverse Rendering [70.27534648770057]
本稿では,複数視点のRGB画像からシーンの照明,幾何学,材料を学習する物理ベースの逆レンダリング手法を提案する。
副産物として、我々の物理ベースの逆レンダリングモデルは、フレキシブルでリアルな素材編集やリライティングを容易にする。
論文 参考訳(メタデータ) (2022-12-09T07:33:49Z) - Designing An Illumination-Aware Network for Deep Image Relighting [69.750906769976]
本稿では、階層的なサンプリングから1つの画像からシーンを段階的にリライトするためのガイダンスに従うイルミネーション・アウェア・ネットワーク(IAN)を提案する。
さらに、物理レンダリングプロセスの近似として、イルミネーション・アウェア・残留ブロック(IARB)が設計されている。
実験の結果,提案手法は従来の最先端手法よりも定量的,定性的な照準結果が得られることがわかった。
論文 参考訳(メタデータ) (2022-07-21T16:21:24Z) - StyLitGAN: Prompting StyleGAN to Produce New Illumination Conditions [1.933681537640272]
本稿では,ラベル付きデータがない場合に生成した画像をリライトし,再提示するための新しい手法であるStyLitGANを提案する。
提案手法では,ペアデータやCGIデータを必要とせず,キャストシャドウ,ソフトシャドウ,反射間効果,光沢効果などのリアルな照明効果を持つ画像を生成する。
論文 参考訳(メタデータ) (2022-05-20T17:59:40Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
そこで本研究では,単体画像から固有物体特性を推定する難題について,微分可能量を用いて検討する。
そこで本研究では、スペクトル化とレイトレーシングを組み合わせることで、これらの効果をサポートするハイブリッド微分可能なDIBR++を提案する。
より高度な物理ベースの微分可能値と比較すると、DIBR++はコンパクトで表現力のあるモデルであるため、高い性能を持つ。
論文 参考訳(メタデータ) (2021-10-30T01:59:39Z) - Towards Geometry Guided Neural Relighting with Flash Photography [26.511476565209026]
本稿では,深層学習を用いた深度マップを用いた1枚のフラッシュ写真から画像のリライティングを行うフレームワークを提案する。
本研究は,本質的な画像分解と画像リライティングにおける最先端の画像ベースアプローチに対する幾何学的アプローチの利点を実験的に検証する。
論文 参考訳(メタデータ) (2020-08-12T08:03:28Z) - Scene relighting with illumination estimation in the latent space on an
encoder-decoder scheme [68.8204255655161]
本報告では,その目的を達成するための手法について述べる。
我々のモデルは、シーン内容、光源位置、色温度の異なる、人工的な場所のレンダリングデータセットに基づいて訓練されている。
本データセットでは,被写体の潜在空間表現における光条件の推測と置き換えを目的とした照明推定成分を用いたネットワークを用いた。
論文 参考訳(メタデータ) (2020-06-03T15:25:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。